Skip to Content
My MSU

National Transportation Center


Use of Large Language Models to Improve Transportation Services

Project Abstract

This project aims to leverage Large Language Models (LLMs) to enhance the analysis of public complaints and suggestions related to transportation systems. By processing feedback from multiple agencies, this study seeks to cluster and analyze common concerns, aiding agencies in aligning their services with public demands and safety needs. The project addresses equity, safety, and sustainability by identifying complaint patterns, especially in underserved areas, to inform responsive infrastructure policies. An open-source LLM model will be developed to safeguard privacy while enabling data-driven improvements in transportation services.

Universities Involved

University of Pittsburgh

Principle Investigators

Lev Khazanovich
Aleksandar Stevanovic

Expected Research Outcomes & Impacts

The project is expected to deliver an open-source LLM capable of analyzing and categorizing public transportation feedback, enabling proactive responses to recurring issues. By addressing public needs with actionable data, findings will facilitate enhanced service quality and equitable resource allocation for transportation agencies​.
Subject Areas

Artificial Intelligence, Large Language Models, Public Engagement