Skip to Content
My MSU

Biology



Dr. Viji Sitther

Viji Sitther, Ph.D.

Professor , Biology

Office: Carnegie Hall G64
Phone: (443) 885-4688
viji.sitther@morgan.edu

Education:


Postdoctoral Researcher, Pennsylvania State University, 2001
Ph.D. University of Madras,1998
M.Phil. University of Madras,1991
B.Ed. Annamalai University, 1990
M.S. University of Madras, 1989
B.S. University of Madras, 1987

Research Interests:

  • Renewable bioenergy and value-added bioproducts 
  • Cyanobacterial biotechnology and metabolic engineering 
  • Application of nanomaterials in cyanobacterial systems

Dr. Sitther’s research answers long-term and short-term questions aimed to enhance value-added cyanobacterial bioproducts through the application of advanced biotechnological tools. The potential of nanomaterials to enhance biomass accumulation and lipid production in these photosynthetic microorganisms is another important aspect of her research. Her transformational research has resulted in five awarded patents and the establishment of a startup, HaloCyTech LLC, to produce high-value specialty products.   

Recent Publications 

  •  Yalcin, Y., Aydin, BN., and Sitther, V. 2024. Impact of zero-valent iron nanoparticles and Ampicillin on adenosine triphosphate and lactate metabolism in the cyanobacterium Fremyella diplosiphon. Microorganisms 12 (3), https://www.mdpi.com/2076-2607/12/3/612.
  • Gichuki, S., Tabatabai, B., and Sitther, V. 2023.  Biocrude production using a novel cyanobacterium: pilot-scale cultivation and lipid extraction via hydrothermal liquefaction. Sustainability. 15 (6) https://www.mdpi.com/2071-1050/15/6/4878.
  • Yalcin, Y.S., Aydin, B., Chen, H., Gichuki, S., and Sitther, V. 2023. Lipid production and cellular changes in Fremyella diplosiphon exposed to nanoscale zerovalent iron nanoparticles and ampicillin. Microbial Cell Factories 22, 108 (2023). https://doi.org/10.1186/s12934-023-02113-2.
  •   Gichuki, S., Arumanayagam, AC, Tabatabai, B, Yalcin, Y, Wyatt, L., and Sitther, V. 2022. Augmentation of the photoreactivation gene in Fremyella diplosiphon confers UV-B tolerance. ACS Omega 7(39): 35092-35101. https://pubs.acs.org/doi/full/10.1021/acsomega.2c03938. 
  • Yalcin, Y.S., Aydin, B., Sayadujjhara, M., and Sitther, V. 2022. Antibiotic-induced changes in pigment accumulation, photosystem II, and membrane permeability in a model cyanobacterium. Frontiers in Microbiology. https://www.frontiersin.org/articles/10.3389/fmicb.2022.930357/full
  • Gichuki, S. M., Yalcin, Y. S., Wyatt, L. D., Ghann, W., Uddin, J., Kang, H., and Sitther, V. 2021. Zero-Valent iron nanoparticles induce reactive oxygen species in the cyanobacterium, Fremyella diplosiphon. ACS Omega, 6(48), 32730–32738
  • Fathabad, S., Tabatabai, B., Dy’mon, W., Chen, H., Lu, J., Aslan, K., Jamal, U., William, G., and Sitther, V. 2020. Impact of zero-valent iron nanoparticles on Fremyella diplosiphon transesterified lipids and fatty acid methyl esters. ACS Omega 21, 12166–12173. https://pubs.acs.org/doi/10.1021/acsomega.0c00566
  • Tabatabai, B., Adusei, A., Shrivastava, A., Singh, P. K., and Sitther, V. 2020. Nitrogen deprivation in Fremyella diplosiphon augments lipid production without affecting growth. Energies 13(21): https://doi.org/10.3390/en13215769  
  • Fathabad, S. G., Arumanayagam, A., Tabatabai, B., Chen, H., Lu, J., Sitther, V. 2019. Augmenting Fremyella diplosiphon cellular lipid content and unsaturated fatty acid methyl esters via sterol desaturase gene overexpression. Applied Biochemistry and Biotechnology 189: pp 1127–1140. https://link.springer.com/article/10.1007/s12010-019-03055-5
  • Tabatabai B., Fathabad, S. G.., Bonyi E., Rajini S., Aslan K., and Sitther, V. 2019. Nanoparticle-mediated impact on growth, photosynthetic efficacy, and fatty acid methyl ester composition in the cyanobacterium Fremyella diplosiphon. BioEnergy Research 12: 409-418. https://link.springer.com/article/10.1007/s12155-019-09966-9 
  • Tabatabai, B., Chen, H., Lu, J., Giwa-Otusajo, J., McKenna, A., Shrivastava, A., Sitther, V. 2018. Fremyella diplosiphon as a biodiesel agent: Identification of fatty acid methyl esters via microwave-assisted direct in situ transesterification. BioEnergy Research, 11: 528-537. DOI: 10.1007/s12155-018-9919-y. https://link.springer.com/article/10.1007/s12155-018-9919-y

Weblinks: