Evaluation of larval survival and settlement rate of low salinity tolerant Eastern oysters.

Kayla M. McVey Mentors: Dr. Chunlei Fan, Dr. Ming Liu, Brittany Wolfe-Bryant Morgan State University PEARL York College of Pennsylvania

Vulnerability Of Coastal Areas

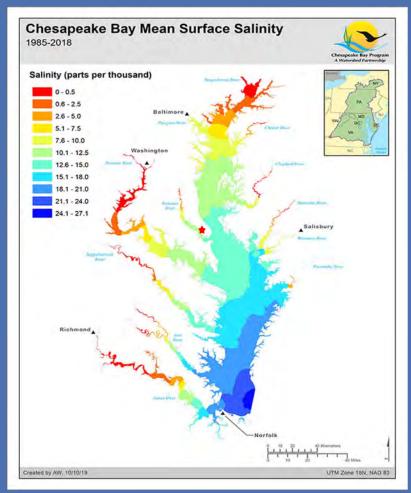
• Effects of climate change:

- Sea-level rise/heavy storms
- Erosion and flooding
- Loss of natural and built habitats

• As global temps rise:

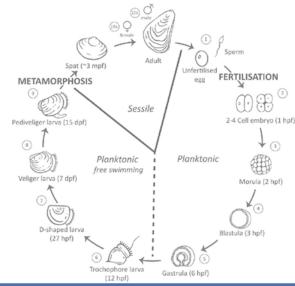
- Sea levels will continue to rise
- Storms will amplify/intensify/occur with greater frequency
- Resulting in continued:
 - Erosion of shorelines
 - Property damage
 - Infrastructure damage
 - Population displacement

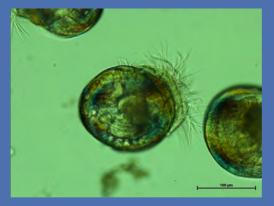
Importance of Oysters in Living Shorelines


- Filter and remove excess nutrients (dead zones)- successful reefs remove 7x more nutrients than watersheds without reefs
- Creation of habitat for crabs and fish- increase in populations
- Support the economy and seafood industry- job creation
- Improve appearance of the Bay

NOAA Fisheries

Salinity Gradient

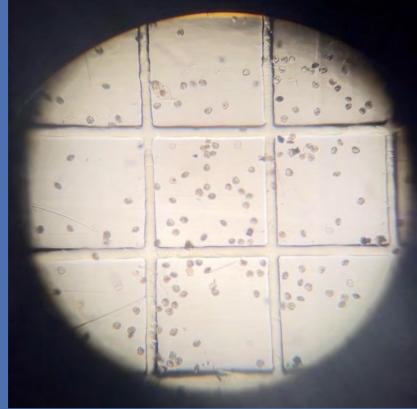

- Salinity varies throughout the Chesapeake Bay
- Eastern oysters are found all throughout the Chesapeake Bay in a wide variety of salinities
- Highest at the mouth of the Bay and lowest at the top and in rivers
- Melting snow in spring months causes a decrease in salinity
- Salinity increases as there is less rainfall


Chesapeake Bay Program

Oyster Larvae

- Fertilized egg trochophore D stage veliger– pediveliger
- Range from 60 um to 300 um throughout larval stages
- Important structures:
 - Cilia- feeding and moving in larval stages
 - Gut- holds and digests algae (indication of health)
 - Eyespot- appears when larvae are ready to settle, helps orient
 - Foot- appears when larvae are ready to settle, helps larvae set on substrate

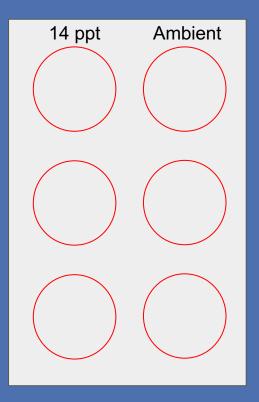
https://www.researchgate.net/figure/Life-cycle-of-the-Pacific-oyster-Crassostrea-gigas-Numbers-1-10-represent-sampling_fig1_308763544



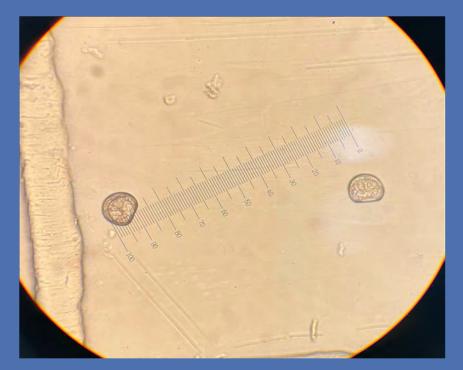
Native Olympia Oyster Collaborative

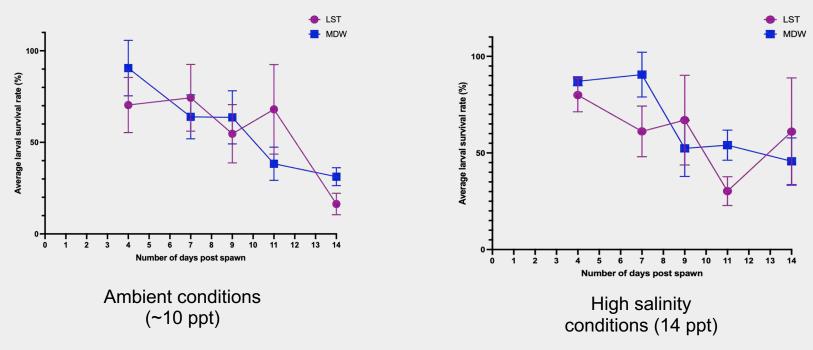
Larvae Survival Experiment

Objective

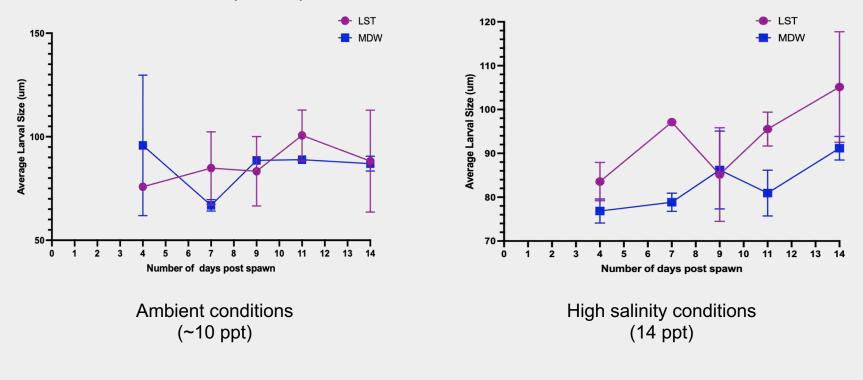

Determine the survival rate of low salinity tolerance oysters (LST) and wild type Maryland oysters (MDW) at two salinity levels: artificial seawater ~14ppt and ambient river water ~10ppt

Spawning


- Method of spawning- strip spawning
- Surgically removing gametes using scalpel
- Egg and sperm are combined
- Allows for controlled fertilization

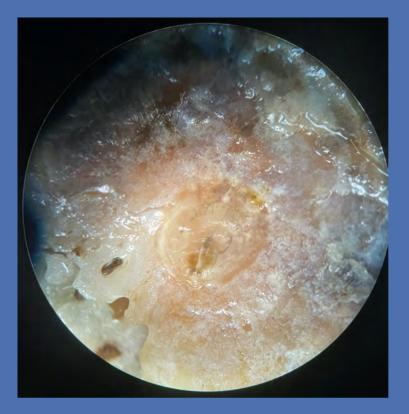


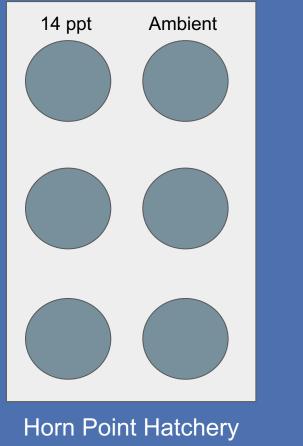
Maryland Wild Type Oysters Low Salinity Tolerance Eastern Oysters The survival and growth rates of each oyster larvae are measured three times a week.

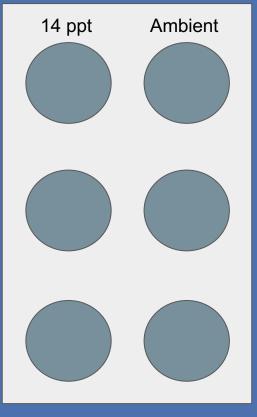

	EARL Data Sheet	
Hatchery Personnel- Drop: Coun CULTURE NAME LS 2N #1 Tai Day of Culture: 11 Previous Count: Previous Count:	nk # Buchet	Salinity 10:74 ppt Air Temperature'F Water Temperature <u>Z3.4</u> 'C pH <u>\$.14</u> DO <u>6 740</u> mg/L
Top Screen Larvae Screen Size:		Beaker Volume (mL): 400
HEALTH: Poor Moderate Healthy Notes: (active/non active larvae, light or dark guts, o	dead shell, etc.)	iome clead shell,
Counts: Sample size (100µL)- multiplier 10 i.e. Av <u>6</u> <u>9</u> <u>9</u> Average: Sizes- Measure 10 larvae (µm) put * next to size if ord.	8	Total Count: 324
	90 90	95 90 110
Bottom Screen Larvae Screen Size: 4	μm	Beaker Volume (mL): 50
HEALTH: Poor Moderate Healthy		
Notes: (active/non active larvae, light or dark guts,		
Counts: Sample size (100µL)- multiplier 10 i.e. Av		
Sizes- Measure 10 larvae (µm) put * next to size if ged.		Total Count: <u>4,500</u>
90 100 85 129 80		5. 100 105
Average size: 100 µm Growth	_µm Combine w	with top size Y/N Discard? Y/N
Today's TOTAL Count (add totals from top and bo	ttom, if combining) _	
Survival: TOTAL count/previous count	=	x 100 = 401 %
Reduce? Y/N (Spawning: 50 eggs/mL, day 2: 10) New Total Count 3 6, 500		$L_{\rm havae/mL}$, day ≥14: 2.5 larvae/mL) 5,00 °

Larval Survival Results

Larval survival showed no significant difference between the two lines and was highly variable throughout the duration of the experiment.

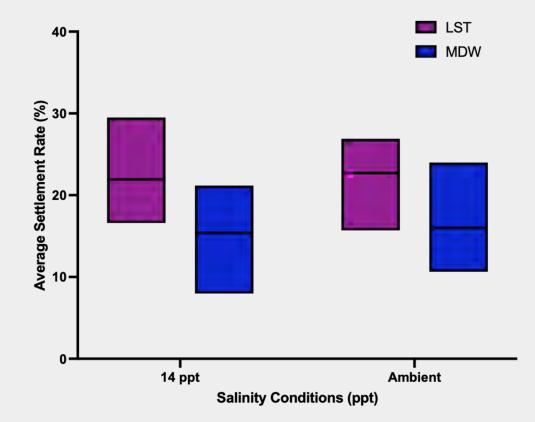

Larval Growth (size) Results



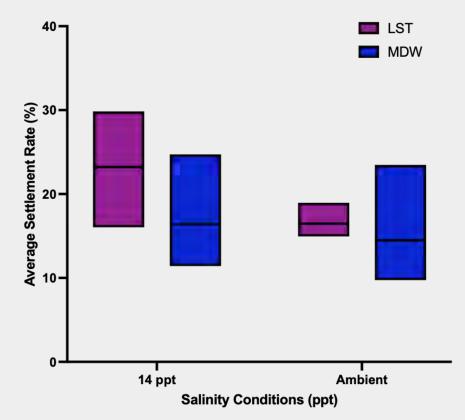

Larval growth showed no significant difference between the two lines and was highly variable throughout the duration of the experiment.

Settlement Experiment

Objective - Determine the settlement rate of low salinity tolerance (LST) and wild type Maryland oysters (native) at two salinity levels: artificial seawater ~14ppt and ambient river water ~10ppt



LOLA Larvae


Piney Point Aquaculture Center Larvae

Larval Settlement Results- 2 weeks post settlement

While LST means are higher, settlement rate p-value and ANOVA showed no significant difference 2 weeks post settlement.

Larval Settlement Results- 1 month post settlement

While LST means are higher, settlement rate p-value and ANOVA showed no significant difference 4 weeks post settlement.



Water Quality and Effects on Larvae

- Contaminants outcompete larvae for space, food, and other resources
- Detrimental to larval health and growth
- Major cause of mortality in larval cultures

Microscopy UK

Clustering During Settlement

- Major variability between amount of spat on each shell
- Spat compete for space and food during growth
- Less spat grow to adulthood

Culture Name	Spat Count										Average	Settlement Rate
HPL #1 Amb	99	66	44	24	42	23	40	86	43	44	51.1	25.5%
HPL #2 Amb	27	10	31	24	40	9	49	46	19	59	31.4	15.7%
HPL #3 Amb	58	20	76	107	40	52	27	25	44	89	53.8	26.9%
HPL #1 14 ppt	21	60	48	43	13	4	93	41	63	7	39.3	19.65%
HPL #2 14 ppt	58	39	57	59	11	24	14	15	26	29	33.2	16.6%
HPL #3 14 ppt	45	87	56	18	79	93	29	35	40	108	59	29.5

Culture Name	Spat Count										Average	Settlement Rate
PPAC #1 Amb	4	1	14	4	9	31	5	72	48	16	20.4	10.64%
PPAC #2 Amb	44	9	22	34	29	12	14	46	8	40	25.8	13.46%
PPAC #3 Amb	16	16	34	160	6	101	22	74	17	14	46	24%
PPAC #1 14 ppt	4	2	8	8	13	36	16	31	9	26	15.3	7.98%
PPAC #2 14 ppt	77	88	18	35	13	32	57	29	25	32	40.6	21.18%
PPAC #3 14 ppt	37	51	13	37	21	109	32	10	9	9	32.8	17.11%

Data Conclusions

- LST and MDW lines showed similar survival, growth and settlement rates.
- Survival, growth and settlement were highly variable within the culture- no significance
- Salinities were fairly similar, may see more differences with more drastic differences in salinity
- Contaminants to cultures can be detrimental to health of larvae
- Best method for oyster reef restorationspawning from oysters native to that location

Acknowledgements

Thank you to everyone who mentored me throughout this project- Dr. Chunlei Fan, Tameka Taylor, Brittany Wolfe-Bryant, Amanda Knobloch, my fellow interns, and the rest of the PEARL staff

References

- Currin, C. A. (2019). Living shorelines for coastal resilience. In Coastal Wetlands (pp.1023-1053). Elsevier.
- Department of Homeland Security https://www.dhs.gov/sites/default/files/publications/oup_coefactsheet_crc_08202019.pdf
- Environmental Protection Agency https://www.epa.gov/green-infrastructure/coastal-resiliency
- Morris, R. L., Bilkovic, D. M., Boswell, M. K., Bushek, D., Cebrian, J., Goff, J., ... & Swearer, S. E. (2019). The application of oyster reefs in shoreline protection: Are we over-engineering for an ecosystem engineer?. Journal of Applied Ecology, 56(7), 1703-1711.
- Fisheries, N. O. A. A. (n.d.). *Chesapeake Bay Oyster Restoration*. NOAA Fisheries. Retrieved August 1, 2022, from https://www.fisheries.noaa.gov/topic/chesapeake-bay/oyster-restoration
- Davis, H. C., & Calabrese, A. (1964). Combined effects of temperature and salinity on development of eggs and growth of larvae of M. mercenaria and C. virginica. Fishery Bulletin, 63(3), 643-655.
- Scharping, R. J., Plough, L. V., Meritt, D. W., & North, E. W. (2019). Low-salinity tolerance of earlystage oyster larvae from a mesohaline estuary. Marine Ecology Progress Series, 613, 97-106. Retrieved from <u>https://www.int-res.com/abstracts/meps/v613/p97-106/</u>