

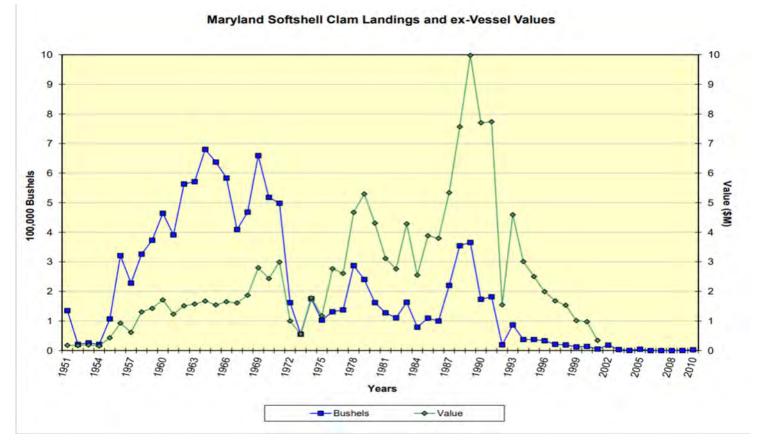
Pushing the Limits: Heat Tolerance in Soft Shell Clams

Jessica Baniak Dr. Ming Liu and Brittany Wolfe-Bryant Morgan State University PEARL Laboratory University of Maryland Baltimore County

Scientific Name: Mya arenaria

Common names: Soft Shell Clams and/or Steamers

Distribution: Maine to Virginia



Economic Value

- \$5-10 million annual industry in Maine (Beal, 2002)
- In 2019, the industry was valued at 54 million dollars with wholesalers, distributors, and others (Downeast Institute, 2020)

History in Maryland

Number of bushels and value of Soft Shell Clams in Maryland from 1951-2010

Potential for Maryland Aquaculture

Main species harvested/caught in the Chesapeake Bay are:

Oysters, Blue crabs, Atlantic Menhaden, etc. (Chesapeake Bay Foundation)

Soft Shell Clam Benefits:

- Create a new species in aquaculture
- More tolerant and grow faster in low salinity conditions than oysters
- Reaches commercial size in two years or less (Baker and Mann, 1991)

"Seasonal year" data (include data from the winter harvest and the preceding year's fall harvest)

Number of Bushels of Oysters in the Chesapeake Bay from 1960-2006. This population decline due to overharvesting, disease, and pollution.

Challenges for developing Soft Shell Clam Cultures in MD

- 1. Seed production
- 2. Culture method
- 3. Heat stress

Heat Stress

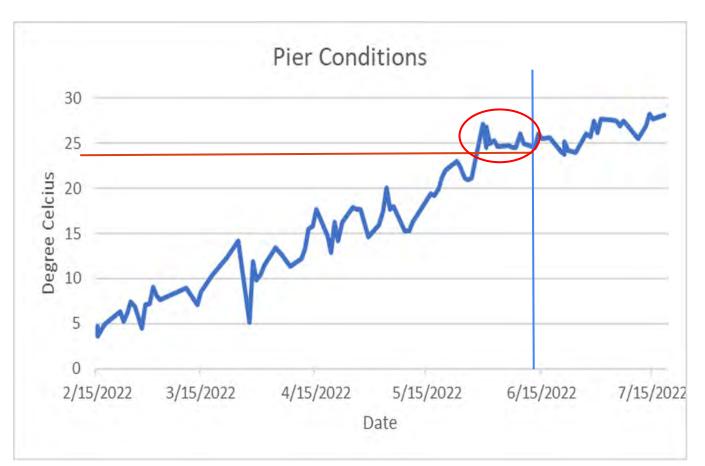
Can survive: -2C to 28C

Optimal temperature: 17C to 23C

Objectives

- 1. Achieve breeding success: successfully spawned juvenile clams in April and we now have ~468K
- **2. Improve heat tolerance**
- **3. Selective breeding based on phenotypic and genotypic breeding methods for heat tolerance**

Selective Breeding Strategies


Phenotypic Approach

Genotypic Approach

Phenotypic Approach

Original Plan: Compare 600 adult and juvenile

<u>However</u>, pier conditions spiked over the 17-23C optimal temperature before they were taken to the lab

Remaining number:

~75 adults ~150 juvenile

Genotypic Approach

Heat shock treatment RNA sequence	Identify heat shock genes Identify Markers on Genes Selection
Heat shock a smaller Prepare the rna from amount of clams and the gills to send to a sample the alive lab to be sequenced. clams.	Receive sequence from lab and identify genes upregulated or downregulated.Sequence top genes from heat shock or use target region sequencing to find markers of desired genes.Use the markers to select clams to breedValidate these genes using RT PCR.markers of desired genes.January Select clams to breedAlso, compare gene expression in different organs.markers of desired select clams to breedJanuary Select clams to breed

For each BS tank: 18 clams bottles 18 sandwiches

BS tank#1: Control ~19-23C

BS tank #2: Heat Stress ~30C

Bottle vs. Sandwich Debate

For Bottle:

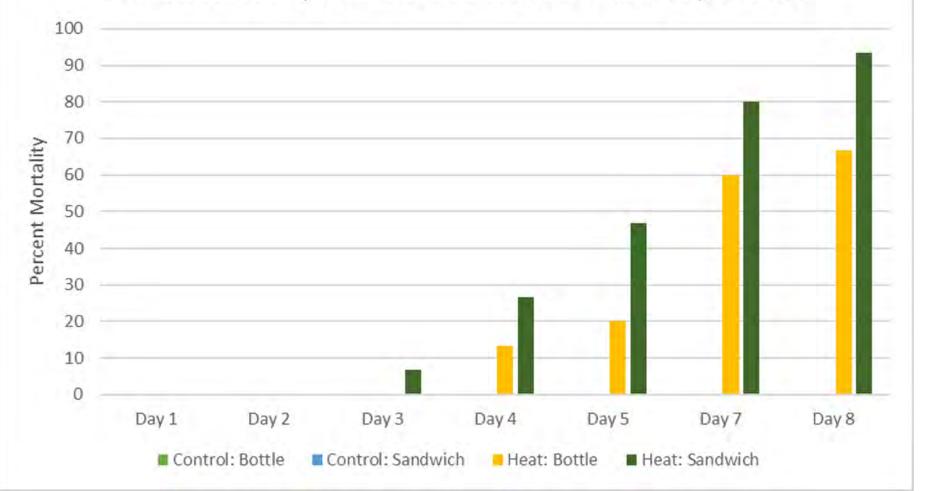
- Sand could insulate and protect from challenging conditions
- Mimics the natural environment
- Prevents overcrowding
- Protects against accidents better

For Sandwich:

- Easier to setup and maintain
- Less prep work
- Can hold a higher density of clams in one place
- Do not have to deal with anoxic sand

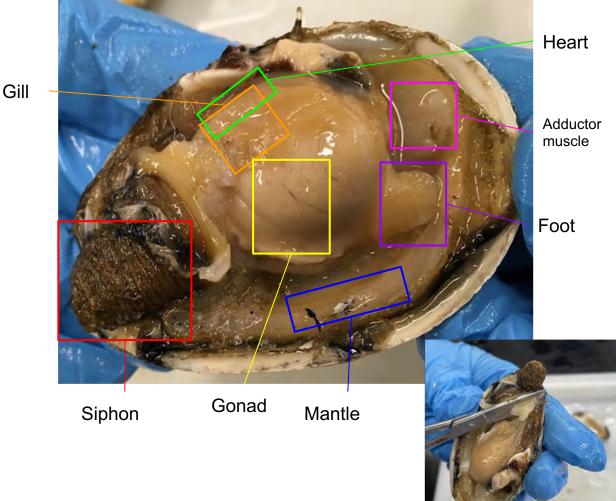
Observations

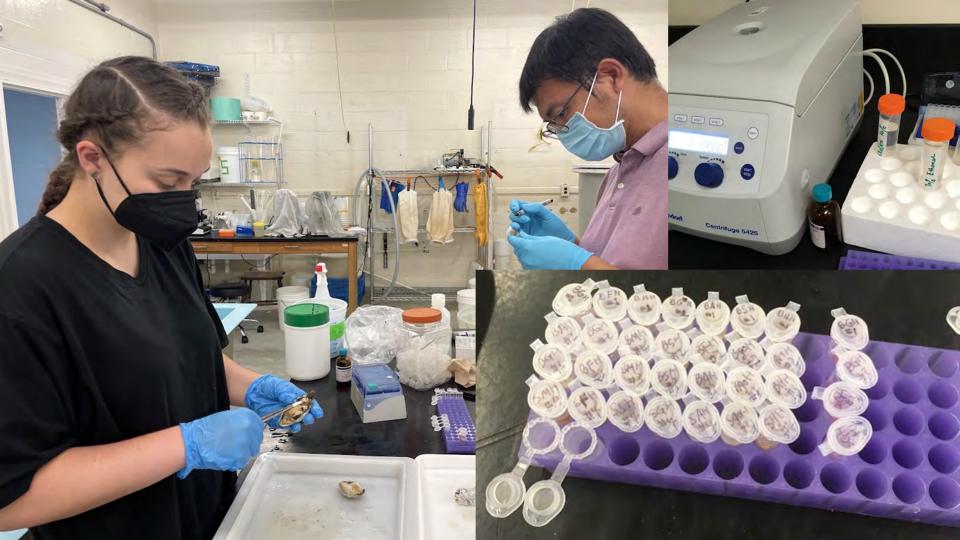
In Heat Stress Conditions:


1. More siphons were extended

1. Siphons were partially closed in most

1. Siphons responded slower to proding




Percent Mortality in Soft Shell Clam Heat Shock Experiment

- First death on 7/27/22
- Sampled 3 live clams from each group (total of 12 samples)
- For Real Time PCR: took samples from each gill, heart, adductor muscle, foot, mantle, gonad, and siphon
- For RNA sequencing: repeated gill samples

Conclusion

• In Heat Stress: more clams in sandwiches died

• In Control: no clams died, so both methods worked

Future Steps

Selective Breeding:

- 1. Send gills samples to lab to be RNA sequenced
- 2. Find these candidate genes and validate them using RT-PCR
- 3. Perform another heat shock with the 600 clams for phenotypic breeding strategy
- 4. Sequence the genes from phenotypic breeding group and their genetic markers
- 5. Use this data to spawn best individuals and run trials on those offspring

*Also continue research on Bottle vs. Sandwich

Acknowledgements

Maryland Sea Grant: Diversification of Maryland Shellfish Aquaculture

Development and Assessment of a Subtidal Grow-out and Method for Culture of Soft-shell Clams (Mya arenaria)

Morgan State University OTT I-GAP grant: Develop heat-tolerant soft-shell clams

Deladmin. (2020, September 20). Soft-shell clams. Downeast Institute. Retrieved August 1, 2022, from https://downeastinstitute.org/research/soft-shellclams/#:":text=Even%20with%20this%20decline%2C%20the%20state%20produces%20about,million%20with%20wholesalers%2C%20distributors%2C%20retailers%2C%20 and%20restaurants%20included

Mya Arenaria, *soft-shelled Clam - Department of Geography*. (n.d.). Retrieved August 1, 2022, from http://www.geog.mcgill.ca/climatechange/ReportsMap/soft_shell_clamRpt.pdf

Weston S., Buttner J, Beal B. (2010). Softshell Clam Culture: Basic Biology and General Culture Considerations. University of Maryland. https://marine-aquaculture.extension.org/wp-content/uploads/2019/05/Softshell-Culture_0.pdf

Baker P. and Mann R. (1991). *Soft Shell Clam Mya arenaria*. VIMS Books and Book Chapter 19.https://scholarworks.wm.edu/cgi/viewcontent.cgi?article=1019&context=vimsbooks

Brian, B. (2002). Adding value to live, commercial size soft-shell clams (Mya arenaria L.) in Maine, USA: results from repeated, small-scale, field impoundment trials. Retrieved August 1, 2022, from https://downeastinstitute.org/wp-content/uploads/2018/08/beal-2002-clam-impoundments.pdf

Pfitzenmeyer, H. T. (n.d.). *Periods of spawning and setting of the soft-shelled clam,Mya Arenaria, at Solomons, Maryland - chesapeake science.* SpringerLink. Retrieved August 1, 2022, from https://link.springer.com/article/10.2307/1351223

Fisheries. Chesapeake Bay Foundation. (n.d.). Retrieved August 2, 2022, from https://www.cbf.org/issues/fisheries/#:^{*}:text=While%20the%20Chesapeake%20Bay%20is,three%20other%20significant%20commercial%20species

Homer M, Dungan C, and Tarnowski M. (2011). *Assessment of Chesapeake Bay commercial softshell clams*. Retrieved August 2, 2022, from https://dnr.maryland.gov/fisheries/Documents/NOAA_Final_report_softshell_clam.pdf

Hanks, R. (1963). THE SOFT -SHELL CLAM. Retrieved August 2, 2022, from https://spo.nmfs.noaa.gov/sites/default/files/legacy-pdfs/CIRC162.pdf

Contact Info

Email: jbaniak1@umbc.edu