
Data Assimilation for Models with a Sparse
Error Covariance

Wei Kang Liang Xu
U.S. Naval Postgraduate School U.S. Naval Research Laboratory

2018 Workshop on Sensitivity Analysis and Data Assimilation
in Meteorology and Oceanography



Data Assimilation

Numerical Weather Prediction

Observation
(y)

Background
(xb)

DATA 
ASSIMILATION

Analysis
(xa)

FORECAST
MODEL Forecast



Data Assimilation

System Model

xk+1 = M(xk ) + ηk , xk ∈ Rn, ηk ∼ model uncertainty,Q
yk = H(xk ) + δk , yk ∈ Rm, δk ∼ sensor noise,R

Linearization
xk+1 = Mkxk + · · ·
yk = Hkxk + · · ·

Both n and m are very large. In daily operations, only a small part of
sensor data is used.



Challenges

4D-Var

• It is an effective method to provide estimation results with an
affordable computational load.

• The method does not provide information about error covariance.

• It requires tangent linear models and adjoint models.

EnKF

• EnKF does not require tangent linear model and adjoint model

• It contains partial information about error statistics

• Undersampling and rank deficiency

• Filter divergence, inbreeding, spurious correlations



Sparsity-based Filters

Sparsity-based filters: The goal is to avoid rank deficiency, provide
more error covariance information, and achieve granularity control for
optimal parallelism.

A variety of parallel computing architectures are available; and new
technologies are being developed rapidly.

• Multi-core CPU

• General-purpose GPU

• Clusters or massively parallel computing

• Grid computing

• Application-specific integrated curcuits

• ......



Sparsity-based Filters

Sparsity of error covariance

Ensemble
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Sparse Covariance
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Sparsity-based Filters

Sparsity based methods

• Approximately sparse error covariance

Nsp = maximum number of nonzero entries in columns

Ii (P) = indices of nonzero entries in the ith-column

• Component-based numerical model

M(x sp
k ; I) or Mcomp

I = indices of entries to be evaluated



Sparsity-based Filters

A progressive approach

Assume
MkPkM

T
k = Pk + ∆Pk+1

To estimate ∆Pk+1, assume

Mk+1 = I + ∆Mk

xk+1 =M(xk ) = xk + ∆(xk )

Then
MkPkM

T
k = (I + ∆Mk )Pk (I + ∆MT

k )

= Pk + ∆MkPk + (∆MkPk )T + · · ·
≈ (M(xk + δPk )−M(xk )) /δ

+ (M(xk + δPk )−M(xk ))T /δ − Pk



Sparsity-based Filters

Prograssive KF

Background xk|k and Psp
k|k (sparse covariance approximation)

Forecast xk+1|k =M(xk|k )
yk+1|k = H(xk|k )

Psp
k+1|k =

(
Mcomp(x sp

k|k + δPsp
k|k )−Mcomp(x sp

k|k )
)
/δ

+
(
Mcomp(x sp

k|k + δPsp
k|k )−Mcomp(x sp

k|k )
)T

/δ

−Psp
k|k + Q

Analysis K = Psp
k+1|kH

T
k+1(Hk+1P

sp
k+1|kH

T
k+1 + R)−1

Psp
k+1|k+1 = (I − KHk+1)Psp

k+1|k
xk+1|k+1 = xk+1|k + K (yk+1 − yk+1|k )



Sparsity-based Filters

Computational load
Progressive KF number of model
Full model components evaluation

M(xk )
M (xk + δPk (:, i)) (n + 1)nNp

i = 1, 2, · · · , n Np- progressive steps

Progressive KF
Component-based model

M(xk )
M (xk + δPk (:, i), Ii (P)) (Nsp + 1)nNp

i = 1, 2, · · · , n
Ensemble KF

M(x i
k )

i = 1, 2, · · · ,Nens Nensn



Sparsity-based Filters

Avoid rank deficiency and achieve granularity control
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Sparse Covariance
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ØP has full rank
ØNsp is a variable
ØTasks can be grouped in different size:

Coarse-grained, medium-grained, fine-grained
ØP localization is straightforward

Rank:
Nens

Size: 
n x Nens



Sparsity-based Filters

Lorenz-96 model

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F , i = 1, 2, · · · ,m

xm+1 = x1

Discretization - 4th-order RK

xk =M(xk−1)

∆t = 0.025

F = 8

m = 40
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Lorenz-96 Chaotic Trajectory



Sparsity-based Filters

A comparison
N = 1000 initial states in [−1 1] - uniform distribution.
Nfilter = 4000 filter steps
m = 20 measurement locations
R = I

Filter Size CMPT
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Sparsity-based Filters

Unscented KF (UKF)

σ-points x i
k|k , 0 ≤ i ≤ 2n

x0k|k = xk|k

Forecast x i
k+1|k =M(x i

k|k ), y i
k+1|k = H(x i

k|k ), 0 ≤ i ≤ 2n

x̄k+1 =
2n∑

i=0

wix
i
k+1|k , ȳk+1 =

2n∑
i=0

wiy
i
k+1|k

Pk+1|k =
2n∑

i=0

wi ∆x i
k+1(∆x i

k+1)T + Q

∆x i
k+1 = x i

k+1|k − x̄k+1

w0 = κ
n+κ , wi = κ

2(n+κ)



Sparsity-based Filters

UKF (Cont.)

Analysis Pyy =
2n∑

i=0

wi ∆y i
k+1(∆y i

k+1)T + R, ∆yk+1 = y i
k+1|k − ȳk+1

Pxy =
2n∑

i=0

wi ∆x i
k+1(∆y i

k+1)T

KPyy = Pxy

xk+1|k+1 = x̄k+1 + K (yk+1 − ȳk+1)

Update Pk+1|k+1 = Pk+1|k − K (Pxy )T

x i
k+1|k+1 = xk+1|k+1 +

√
(n + κ)Pk+1|k+1, i = 1, 2, · · · , n

x i
k+1|k+1 = xk+1|k+1 −

√
(n + κ)Pk+1|k+1, i = n + 1, · · · , 2n



Sparsity-based Filters

Sparsity of square root matrix

Theorem (S. Toledo). If P is a symmetric positive definite matrix. The
amount of storage for a Cholesky decomposition of P is O(n + 2η(P)),
where η(P) is the number of nonzero entries in P.

Assumption: The sparsity patterns of P and (
√
P)f are known.



Sparsity-based Filters

Sparse UKF

Sparse x0k|k = xk|k
σ-points σi , Ii (sparsity index) 1 ≤ i ≤ n

Forecast x0k+1|k =M(x0k|k ),

x i
k+1|k =Mcomp(x0k|k + σi ), x i+n

k+1|k =Mcomp(x0k|k − σ
i )

y i
k+1|k = H(x i

k+1|k.Ii
x0k+1|k ), 1 ≤ i ≤ 2n

x̄k+1 =
2n∑

i=0

wi (x
i
k+1|k.Ii

x0k+1|k ), ȳk+1 =
2n∑

i=0

wiy
i
k+1|k

Psp
k+1|k =

2n∑
i=0

wi

(
∆x i

k+1(∆x i
k+1)T

)sp
+ Q

w0 = κ
n+κ , wi = κ

2(n+κ) , ∆x i
k+1 = x i

k+1|k.Ii
x0k+1|k − x̄k+1

x sp
1 .I x2 - merging operation.



Sparsity-based Filters

Sparse UKF (Cont.)

Analysis Pyy =
2n∑

i=0

wi ∆y i
k+1(∆y i

k+1)T , ∆y i
k+1 = y i

k+1|k − ȳk+1

Pxy =
2n∑

i=0

wi ∆x i
k+1(∆y i

k+1)T

KPyy = Pxy

xk+1|k+1 = x̄k+1 + K (yk+1 − ȳk+1)

Update Psp
k+1|k+1 = Psp

k+1|k −
(
K (Pxy )T

)sp

σi , Ii ∼
√

(n + κ)Psp
k+1|k+1, i = 1, 2, · · · , n
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Summary

Progressive KF Sparse UKF

Full rank covariance X X
Small variation X X

Reduced I/O cost X X
Pk+1 ≈ Pk + ∆Pk X

Cholesky decomposition X

Thank you!
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