

Data Assimilation for Models with a Sparse Error Covariance

Wei Kang U.S. Naval Postgraduate School Liang Xu U.S. Naval Research Laboratory

2018 Workshop on Sensitivity Analysis and Data Assimilation in Meteorology and Oceanography

Data Assimilation

Numerical Weather Prediction

System Model

 $\begin{array}{rcl} x_{k+1} &=& \mathcal{M}(x_k) + \eta_k, & x_k \in \mathbb{R}^n, & \eta_k \sim \text{model uncertainty}, Q \\ y_k &=& \mathcal{H}(x_k) + \delta_k, & y_k \in \mathbb{R}^m, & \delta_k \sim \text{sensor noise}, R \end{array}$

Linearization

 $\begin{array}{rcl} x_{k+1} & = & M_k x_k + \cdots \\ y_k & = & H_k x_k + \cdots \end{array}$

Both n and m are very large. In daily operations, only a small part of sensor data is used.

4D-Var

- It is an effective method to provide estimation results with an affordable computational load.
- The method does not provide information about error covariance.
- It requires tangent linear models and adjoint models.

EnKF

- EnKF does not require tangent linear model and adjoint model
- It contains partial information about error statistics
- Undersampling and rank deficiency
- Filter divergence, inbreeding, spurious correlations

Sparsity-based filters: The goal is to avoid rank deficiency, provide more error covariance information, and achieve granularity control for optimal parallelism.

A variety of parallel computing architectures are available; and new technologies are being developed rapidly.

- Multi-core CPU
- General-purpose GPU
- Clusters or massively parallel computing
- Grid computing
- Application-specific integrated curcuits

Sparsity of error covariance

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	x	v	v	x	v
X X	2	<u>.</u>	<u>.</u>		<u>.</u>
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	х	х	х	x	х
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	Х	Х	х	х	х
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	Х	х	х	х	х
X X	х	х	х	х	х
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	х	х	х	х	х
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	х	х	х	х	х
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	Х	х	х	х	х
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Х	х	х	х	х
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	х	х	х	х	х
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	х	х	х	х	х
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	Х	х	х	х	х
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	х	х	х	х	х
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	Х	х	х	х	х
X X X X X X X X X X X X X X X X X X X X	Х	х	х	х	х
X X X X X X X X X X X X X X X X X X X X	х	х	х	х	х
X X X X X X X X X X X X X X X	х	х	х	х	х
X X X X X X X X X X	х	х	х	х	х
ххххх	х	х	х	х	х
	Х	х	х	х	х

Ensemble

Sparse Covariance			
х			
ХХ			
ххх			
XXXX			
0 X X X X			
0 0 X X X X			
0 0 0 X X X X X			
0 0 0 0 X X X X			
00000XXXX			
00000XXXX			
0 0 0 0 0 0 0 X X X X			
0000000XXXX			
00000000000000	(
0000000000000	x		
00000000000	XX		
0000000000000	XXX		
00000000000000000	XXXX		
00000000000000000	0 X X X X		
00000000000000000	00XXXX		
00000000000000000	0000xxx		

Sparsity based methods

• Approximately sparse error covariance

 N_{sp} = maximum number of nonzero entries in columns $\mathcal{I}_i(P)$ = indices of nonzero entries in the *i*th-column

• Component-based numerical model

 $\mathcal{M}(x_k^{sp};\mathcal{I})$ or \mathcal{M}^{comp}

 $\mathcal{I} =$ indices of entries to be evaluated

A progressive approach

Assume

$$M_k P_k M_k^T = P_k + \Delta P_{k+1}$$

To estimate ΔP_{k+1} , assume

 $M_{k+1} = I + \Delta M_k$ $x_{k+1} = \mathcal{M}(x_k) = x_k + \Delta(x_k)$

Then

$$M_{k}P_{k}M_{k}^{T} = (I + \Delta M_{k})P_{k}(I + \Delta M_{k}^{T})$$

= $P_{k} + \Delta M_{k}P_{k} + (\Delta M_{k}P_{k})^{T} + \cdots$
 $\approx (\mathcal{M}(x_{k} + \delta P_{k}) - \mathcal{M}(x_{k}))/\delta$
 $+ (\mathcal{M}(x_{k} + \delta P_{k}) - \mathcal{M}(x_{k}))^{T}/\delta - P_{k}$

Prograssive KF

Background $x_{k|k}$ and $P_{k|k}^{sp}$ (sparse covariance approximation)

Forecast
$$\begin{aligned} x_{k+1|k} &= \mathcal{M}(x_{k|k}) \\ y_{k+1|k} &= \mathcal{H}(x_{k|k}) \\ P_{k+1|k}^{sp} &= \left(\mathcal{M}^{comp}(x_{k|k}^{sp} + \delta P_{k|k}^{sp}) - \mathcal{M}^{comp}(x_{k|k}^{sp}) \right) / \delta \\ &+ \left(\mathcal{M}^{comp}(x_{k|k}^{sp} + \delta P_{k|k}^{sp}) - \mathcal{M}^{comp}(x_{k|k}^{sp}) \right)^T / \delta \\ &- P_{k|k}^{sp} + Q \end{aligned}$$

Analysis
$$K = P_{k+1|k}^{sp} H_{k+1}^{T} (H_{k+1} P_{k+1|k}^{sp} H_{k+1}^{T} + R)^{-1}$$

 $P_{k+1|k+1}^{sp} = (I - KH_{k+1}) P_{k+1|k}^{sp}$
 $x_{k+1|k+1} = x_{k+1|k} + K(y_{k+1} - y_{k+1|k})$

Computational load

Progressive KF	number of model
Full model	components evaluation
$\mathcal{M}(x_k)$	
$\mathcal{M}(x_k + \delta P_k(:,i))$	$(n+1)nN_p$
$i=1,2,\cdots,n$	N _p - progressive steps
Progressive KF	
Component-based model	
$\mathcal{M}(x_k)$	
$\mathcal{M}(x_k + \delta P_k(:, i), \mathcal{I}_i(P))$	$(N_{sp}+1)nN_p$
$i=1,2,\cdots,n$	
Ensemble KF	
$\mathcal{M}(x_k^i)$	
$i=1,2,\cdots,N_{ens}$	N _{ens} n

Avoid rank deficiency and achieve granularity control

Ensemble

Sparse Covariance

хх

XXXX

XXXXX

0000XX

00000XX

000000XX

- > P has full rank
 - $> N_{sp}$ is a variable
 - > Tasks can be grouped in different size:
 - Coarse-grained, medium-grained, fine-grained
 - > P localization is straightforward

Lorenz-96 model

$$\frac{dx_i}{dt} = (x_{i+1} - x_{i-2})x_{i-1} - x_i + F, \quad i = 1, 2, \cdots, m$$
$$x_{m+1} = x_1$$

Discretization - 4th-order RK
$$x_k = \mathcal{M}(x_{k-1})$$
 $\Delta t = 0.025$ $F = 8$ $m = 40$

A comparison

N = 1000 initial states in $[-1 \ 1]$ - uniform distribution. $N_{filter} = 4000$ filter steps

m = 20 measurement locations

R = I

Filter	Size	CMPT
		EVAL
EnKF	$N_{ens} = 10$	400
P-KF	$N_{sp} = 7$	
	$N_p = 1$	320
P-KF	$N_{sp}=11$	
	$N_p = 2$	480x2
P-KF	$N_{sp} = 11$	
	$N_p = 3$	480×3

A comparison

1111

N = 1000 initial states in [-1 1] - uniform distribution.

 $N_{filter} = 4000$ filter steps m = 20 measurement locations R = I

CMPT Filter Size EVAL EnKF $N_{ens} = 10$ 400 P-KF $N_{sp} = 7$ $N_{p} = 1$ 320 P-KF $N_{sp} = 11$ $N_{p} = 2$ 480x2 P-KF $N_{sp} = 11$ $N_{p} = 3$ 480x3

 $0 \leq i \leq 2n$

Unscented KF (UKF)

 σ -points

$$x_{k|k}^{i},$$

$$x_{k|k}^{0} = x_{k|k}$$

Forecast

$$\begin{aligned} x_{k+1|k}^{i} &= \mathcal{M}(x_{k|k}^{i}), \qquad y_{k+1|k}^{i} = \mathcal{H}(x_{k|k}^{i}), \qquad 0 \le i \le 2n \\ \bar{x}_{k+1} &= \sum_{i=0}^{2n} w_{i} x_{k+1|k}^{i}, \quad \bar{y}_{k+1} = \sum_{i=0}^{2n} w_{i} y_{k+1|k}^{i} \\ P_{k+1|k} &= \sum_{i=0}^{2n} w_{i} \Delta x_{k+1}^{i} (\Delta x_{k+1}^{i})^{T} + Q \\ \Delta x_{k+1}^{i} &= x_{k+1|k}^{i} - \bar{x}_{k+1} \\ w_{0} &= \frac{\kappa}{n+\kappa}, \quad w_{i} = \frac{\kappa}{2(n+\kappa)} \end{aligned}$$

$\textbf{UKF} \ (\texttt{Cont.})$

Analysis
$$P^{yy} = \sum_{\substack{i=0\\2n}}^{2n} w_i \Delta y_{k+1}^i (\Delta y_{k+1}^i)^T + R, \quad \Delta y_{k+1} = y_{k+1|k}^i - \bar{y}_{k+1}$$

 $P^{xy} = \sum_{\substack{i=0\\2n}}^{2n} w_i \Delta x_{k+1}^i (\Delta y_{k+1}^i)^T$
 $KP^{yy} = P^{xy}$
 $x_{k+1|k+1} = \bar{x}_{k+1} + K(y_{k+1} - \bar{y}_{k+1})$
Update $P_{k+1|k+1} = P_{k+1|k} - K(P^{xy})^T$
 $x_{k+1|k+1}^i = x_{k+1|k+1} + \sqrt{(n+\kappa)P_{k+1|k+1}}, \quad i = 1, 2, \cdots, n$

$$x_{k+1|k+1}^{i} = x_{k+1|k+1} - \sqrt{(n+\kappa)P_{k+1|k+1}}, i = n+1, \cdots, 2n$$

Sparsity of square root matrix

Theorem (S. Toledo). If P is a symmetric positive definite matrix. The amount of storage for a Cholesky decomposition of P is $O(n + 2\eta(P))$, where $\eta(P)$ is the number of nonzero entries in P.

Assumption: The sparsity patterns of P and $(\sqrt{P})^f$ are known.

Sparse UKF

Sparse
$$\sigma$$
-points

$$egin{array}{l} x^0_{k|k} = x_{k|k} \ m{\sigma^i}, \ m{\mathcal{I}_i} \ (ext{sparsity index}) \end{array}$$

$$1 \le i \le n$$

Forecast

cast
$$x_{k+1|k}^{0} = \mathcal{M}(x_{k|k}^{0}),$$

 $x_{k+1|k}^{i} = \mathcal{M}^{comp}(x_{k|k}^{0} + \sigma^{i}),$ $x_{k+1|k}^{i+n} = \mathcal{M}^{comp}(x_{k|k}^{0} - \sigma^{i}),$
 $y_{k+1|k}^{i} = \mathcal{H}(x_{k+1|k}^{i} \triangleright_{\mathcal{I}_{i}} x_{k+1|k}^{0}),$ $1 \le i \le 2n$
 $\bar{x}_{k+1} = \sum_{i=0}^{2n} w_{i}(x_{k+1|k}^{i} \triangleright_{\mathcal{I}_{i}} x_{k+1|k}^{0}),$ $\bar{y}_{k+1} = \sum_{i=0}^{2n} w_{i}y_{k+1|k}^{i}$
 $\mathcal{P}_{k+1|k}^{sp} = \sum_{i=0}^{2n} w_{i} \left(\Delta x_{k+1}^{i} (\Delta x_{k+1}^{i})^{T}\right)^{sp} + Q$
 $w_{0} = \frac{\kappa}{n+\kappa}, w_{i} = \frac{\kappa}{2(n+\kappa)}, \Delta x_{k+1}^{i} = x_{k+1|k}^{i} \triangleright_{\mathcal{I}_{i}} x_{k+1|k}^{0} - \bar{x}_{k+1}$

 $x_1^{sp} \triangleright_{\mathcal{I}} x_2$ - merging operation.

Sparse UKF (Cont.)

Analysis
$$P^{yy} = \sum_{\substack{i=0\\2n}}^{2n} w_i \Delta y_{k+1}^i (\Delta y_{k+1}^i)^T$$
, $\Delta y_{k+1}^i = y_{k+1|k}^i - \bar{y}_{k+1}$
 $P^{xy} = \sum_{\substack{i=0\\2n}}^{2n} w_i \Delta x_{k+1}^i (\Delta y_{k+1}^i)^T$
 $KP^{yy} = P^{xy}$
 $x_{k+1|k+1} = \bar{x}_{k+1} + K(y_{k+1} - \bar{y}_{k+1})$
Update $P^{sp}_{k+1|k+1} = P^{sp}_{k+1|k} - (K(P^{xy})^T)^{sp}$
 $\sigma^i, \mathcal{I}_i \sim \sqrt{(n+\kappa)P^{sp}_{k+1|k+1}}, \quad i = 1, 2, \cdots, n$

A comparison

N = 1000 initial states in $[-1 \ 1]$ - uniform distribution. $N_{filter} = 4000$ filter steps m = 20 measurement locations R = I

Filter	Size	CMPT
		EVAL
EnKF	$N_{ens} = 10$	400
S-UKF	$N_{sp} = 7$	600
S-UKF	$N_{sp} = 11$	920

A comparison

N = 1000 initial states in $[-1 \ 1]$ - uniform distribution. $N_{filter} = 4000$ filter steps m = 20 measurement locations R = I

Filter	Size	CMPT	
		EVAL	
EnKF	$N_{ens} = 10$	400	
S-UKF	$N_{sp} = 7$	600	
S-UKF	$N_{sp} = 11$	920	

	Progressive KF	Sparse UKF
Full rank covariance	\checkmark	1
Small variation	1	1-2
Reduced I/O cost	\checkmark	$\sqrt{25}$
$P_{k+1} \approx P_k + \Delta P_k$	\checkmark	A.N
Cholesky decomposition		\checkmark

1111

	Progressive KF	Sparse UKF
Full rank covariance	\checkmark	
Small variation	\checkmark	1
Reduced I/O cost	√	\checkmark
$P_{k+1} \approx P_k + \Delta P_k$	\checkmark	A.N
Cholesky decomposition		\checkmark

Thank you!