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Palmod is funded by the German Federal Ministry of Education
and Science (BMBF) to understand climate system dynamics

and variability during the last glacial cycle. Two specific topics
are

to identify and quantify the relative contributions of the
fundamental processes which determined the Earth’s
climate trajectory and variability during the last glacial cycle

to simulate with comprehensive Earth System Models
(ESMs) the climate from the peak of the last interglacial
(the Eemian warm period) up to the present, including the
changes in the spectrum of variability

The second topic involves assimilation of paleoclimate
proxy data [Eemian, Last Glacial Maximum, mid Holocene]
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Proxy-observation locations are sometimes uncertain
[e.g. planktonic foraminiferal].

Timestamps often long term means often uncertain in
width and time allocation [e.g. speleothems].

Proxy observation ~ climate variable: 7{(.) or Proxy
system model (PSM). Deterministic? Statistical?
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Initial conditions are uncertain. But it is generally
assumed that for long-term paleoclimate evolution these (if
reasonable) are a second-order effect with respect to other
uncertainties

Boundary conditions are also uncertain [e.g. ice sheets].

Model parameter [physics] are uncertain to some
degree, even for scientifically validated models

Adjoint codes not available for ESMs

Computational requirements are a strong constraint:
CESM example [in HLRN3 HPC]:

- b.el2.B1850C5CN.£f19 _gl6.1850_equ.sta.000
Total PES active: 24x%6=144
Overall Metrics:
Model Cost: 273.51 pe-hrs/simulated_year
Model Throughput: 12.64 simulated_years/day

E.g.: {m = 50,At =500 yr} = 7200 proc x40 days
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Paleoclimate assimilation: one current approach
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Uncertainty assumption for online DA in > multidecadal
paleoclimate reanalysis

Proposal:
Background error, after some time towards equilibrium, can
be assumed to arise mostly from unknown dynamical
parameters [memoryless PDF with respect to IC]. Use
these as the only control variables into a small 8 vector.
6 normally would be the physics, but it can include
parameterized initial condition uncertainty and forcings
[including flux corrections], provided it is kept small.

Thus the state vector is only this small set. Covariance
can be explicitly dealt with.
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Within a DAW at a specific time t,, 6, € RY is a vector of
uncertain model parameters at, and we assume

0= 9k+1 = 0y within the DAW.

For simplification, focusing on a t,, we assume a state
vector augmented with model parameters. The Kalman
gain matrix rows Ky, , can be expressed e.g. as:

Kko = PkHE[H Pk (HK)T + Ry] "
= PooG[GkPos(Gk)T + Ry] ",
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In (1) the covariance between a model parameter 6; and the
observation y is expressed in each case as

(PRAD):, Y] = o, 0,22

kay i ax

oy
(PooGi)[0;,y] = ]2; 00,0, 50 26,

. . . (o) ¢
which, are identical as o, o, = Z}; agjgia—gj«!.
ensemble sensitivity: E.g., the batch-EnRML (Chen &
Oliver, 2012), estimates and ensemble-based average
sensitivity matrix G, at / iteration (AY' = G))A#/;

OAT perturbation-based: G, estimated from sensitivity
experiments (8; samples from conditional density)
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Gaussian Anamorphosis [GA] (Simon & Bertino 2003)
Iterations: IKF (Jazwinski 1970; Bell & Cathey, 1993), IKS
(Bell 1994), MLEF (Zupanski 2004), EnRML (formulated in
the parameter space; Gu & Oliver, 2007), batch-EnRML
(Chen & Oliver, 2012), IEnKF (Sakov et al., 2012), IEnKS
(Bocquet & Sakov, 2013,2014; the latter joint
state+parameters), IEnNKF+Q (Sakov et al. 2018)

Assume model uncertainty encapsulated in a small 8
Formulations as function of G,, estimated form OAT
perturbation experiments. Two (combinable) iterated
schemes:

pIKS perturbed-parameters lterated Kalman Smoother. A
Gauss-Newton akin to an asynchronous IKF

PMKS perturbed-parameters multistep Kalman Smoother.
Regularization based on deflation of R.
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Experimental setup
CESM1.2.2: COMPSET B1850CN [ice sheets as BC]
f45_g37 FV: [atm ~4 deg reg | ocean/sea ice: displaced pole ~3 deg]
Preindustrial conditions in equilibrium [after 1200 yr spin up]
Then run control [truth] for 100 yr
Ensemble [m=60] with perturbed physics (clouds microphysics, ocean
diffusivity, sea ice albedos. . .) branch from the same initial conditions
as the control run. Then ETKF, ETKF-GA, pIKS, pMKS

Observations: MARGO-like SST 20 yr mean at the end of the 100 yr
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[MARGO Project Members, Nature (2009)]
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CESM experiments: parameter definition

COMP.nam
CAM.cldfrc_rhminh
CAM.cldfrc_rhminl
CAM.ch4vmr
CAM.co2vmr
CAM.zmconv_c0Ind
CAM.zmconv_c0_ocn
CAM.zmconv_ke
POP2.bckgrnd_vdcl
POP2.hmix_gm nml.ah
POP2.freshwater_gis

minimum relative humidity for high stable cloud form:
minimum relative humidity for low stable cloud formation
greenhouse gases, CHy4 volume mixing r:

greenhouse gases, COg volume mixing rat!

autoconversion coeflicient over land in ZM deep convection
autoconversion coeflicient over ocean in ZM deep convection
evaporation efficiency in ZM deep convection

KPP mixing: background vertical diffusivity (Ledwell)
Gent-Williams isopycnic tracer diffusion (Redi)?

freshwater influx homogeneously distributed around Greenland

1COMP:name CESM component and parameter name.
2POP2.hmix_gm_nml.ah_bolus constrained to equal POP2.ah.hmix_gm_nml.ah.
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Example observation at Equatorial Pacific
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Example observation at North Atlantic
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[SST & SSS moisture]

ETKF : A [bias(SST)|

Synthetic experiment:MARGO

pMKS : A |bias(SST)|
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Conclusions

Most of the current work in paleoDA is actually on the
forward operators (Paleoclimate proxy model [PSM]).
Moreover, there is an open debate about how model and
observations should be compared quantitatively, which is
the basis for developing H.

As models converge towards their climatology after some
time, it seems the perturbed physics is a) a posible way of
recovering the power spectrum showed by paleoproxy
observations and b) a possible mechanism to create the
background statistics needed for the assimilation

Our tests indicate that > multidecadal analysis of past
climates (no background covariance at hand) the iterative
methods based on OAT perturbations for each degree of
freedom (assumed low-dimensional) beat ETKF (ensemble
sensititivy) from a computational and statistical point of
view.






