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Palmod is funded by the German Federal Ministry of Education
and Science (BMBF) to understand climate system dynamics
and variability during the last glacial cycle. Two specific topics
are

I to identify and quantify the relative contributions of the
fundamental processes which determined the Earth’s
climate trajectory and variability during the last glacial cycle

I to simulate with comprehensive Earth System Models
(ESMs) the climate from the peak of the last interglacial
(the Eemian warm period) up to the present, including the
changes in the spectrum of variability

The second topic involves assimilation of paleoclimate
proxy data [Eemian, Last Glacial Maximum, mid Holocene]
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[Huybers and Curry (2006)]
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Paleoclimate proxies: uncertainties
I Proxy-observation locations are sometimes uncertain

[e.g. planktonic foraminifera].
I Timestamps often long term means often uncertain in

width and time allocation [e.g. speleothems].
I Proxy observation ∼ climate variable: H(.) or Proxy

system model (PSM). Deterministic? Statistical?
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Paleoclimate modelling: uncertainties/DA computational
constraints

I Initial conditions are uncertain. But it is generally
assumed that for long-term paleoclimate evolution these (if
reasonable) are a second-order effect with respect to other
uncertainties

I Boundary conditions are also uncertain [e.g. ice sheets].
I Model parameter [physics] are uncertain to some

degree, even for scientifically validated models
I Adjoint codes not available for ESMs
I Computational requirements are a strong constraint:

CESM example [in HLRN3 HPC]:
- b.e12.B1850C5CN.f19_g16.1850_equ.sta.000

Total PES active: 24*6=144
Overall Metrics:
Model Cost: 273.51 pe-hrs/simulated_year
Model Throughput: 12.64 simulated_years/day

E.g.: {m = 50,∆t = 500 yr} ⇒ 7200 proc ×40 days
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Paleoclimate assimilation: one current approach
Computational burden→ the offline strategy

[Figure: Bijan Fallah]
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Paleoclimate assimilation: a possible alternative approach
Uncertainty assumption for online DA in ≥ multidecadal

paleoclimate reanalysis

I Proposal:
1. Background error, after some time towards equilibrium, can

be assumed to arise mostly from unknown dynamical
parameters [memoryless PDF with respect to IC]. Use
these as the only control variables into a small θ vector.

2. θ normally would be the physics, but it can include
parameterized initial condition uncertainty and forcings
[including flux corrections], provided it is kept small.

I Thus the state vector is only this small set. Covariance
can be explicitly dealt with.
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Joint state-parameter estimation in the parameter space
I Within a DAW at a specific time tk , θk ∈ Rq is a vector of

uncertain model parameters at, and we assume
θ ≡ θk+1 = θk within the DAW.

I For simplification, focusing on a tk , we assume a state
vector augmented with model parameters. The Kalman
gain matrix rows Kkθ , can be expressed e.g. as:

Kkθ = Pk H̃T
k [H̃kPk (H̃k )T + Rk ]−1

= PθθGT
k [GkPθθ(Gk )T + Rk ]−1,

(1)
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Sensitivity estimation. What can we afford?
In (1) the covariance between a model parameter θi and the
observation y is expressed in each case as

(Pk H̃T
k )[θi , y ] = σxky θi

∂y
∂xky

,

(PθθGT
k )[θi , y ] =

q∑
j=1

σθjθi

∂y
∂θj

,

(2)

which, are identical as σxky θi =
∑q

j=1 σθjθi

∂xky
∂θj

.

I ensemble sensitivity: E.g., the batch-EnRML (Chen &
Oliver, 2012), estimates and ensemble-based average
sensitivity matrix Ḡl at l iteration (∆Yl = Ḡl)∆θl ;

I OAT perturbation-based: Ḡl estimated from sensitivity
experiments (θi samples from conditional density)
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Some options to deal with non-linearity
I Gaussian Anamorphosis [GA] (Simon & Bertino 2003)
I Iterations: IKF (Jazwinski 1970; Bell & Cathey, 1993), IKS

(Bell 1994), MLEF (Zupanski 2004), EnRML (formulated in
the parameter space; Gu & Oliver, 2007), batch-EnRML
(Chen & Oliver, 2012), IEnKF (Sakov et al., 2012), IEnKS
(Bocquet & Sakov, 2013,2014; the latter joint
state+parameters), IEnKF+Q (Sakov et al. 2018)

Our simple “affordable” approach
I Assume model uncertainty encapsulated in a small θ
I Formulations as function of Ḡl , estimated form OAT

perturbation experiments. Two (combinable) iterated
schemes:

I pIKS perturbed-parameters Iterated Kalman Smoother. A
Gauss-Newton akin to an asynchronous IKF

I pMKS perturbed-parameters multistep Kalman Smoother.
Regularization based on deflation of R.
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Experimental setup
I CESM1.2.2: COMPSET B1850CN [ice sheets as BC]
I f45_g37 FV: [atm ∼4 deg reg | ocean/sea ice: displaced pole ∼3 deg]
I Preindustrial conditions in equilibrium [after 1200 yr spin up]
I Then run control [truth] for 100 yr
I Ensemble [m=60] with perturbed physics (clouds microphysics, ocean

diffusivity, sea ice albedos. . . ) branch from the same initial conditions
as the control run. Then ETKF, ETKF-GA, pIKS, pMKS

I Observations: MARGO-like SST 20 yr mean at the end of the 100 yr
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CESM experiments: parameter definition
Experimental setup
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Gaussian Anamorphosis

0.16 0.18 0.20 0.22 0.24

0

2

4

6

8

POP2.bckgrnd_vdc1 − raw

C
ou

nt

0.14 0.18 0.22

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Raw percentiles
G

au
ss

ia
n 

pe
rc

en
til

es

0.16 0.18 0.20 0.22 0.24

0

2

4

6

8

POP2.bckgrnd_vdc1 − ana

C
ou

nt

7 8 9 10

0

2

4

6

8

10

12

14

SST ( 245.3 , −54.91 ) − raw

C
ou

nt

7 8 9 10 11

0

2

4

6

8

10

12

14

Raw percentiles

G
au

ss
ia

n 
pe

rc
en

til
es

6 7 8 9 10

0

1

2

3

4

5

6

7

SST ( 245.3 , −54.91 ) − ana
C

ou
nt



Problem description Assimilation methods Synthetic experiment:MARGO Conclusions

How nonlinear are multidecadal sensitivities?
Example observation at Equatorial Pacific
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How nonlinear are multidecadal sensitivities?
Example observation at North Atlantic
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CESM: multidecadal sensitivity [AMOC ∼ ocean vdiff]
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CESM: multidecadal sensitivity [SST,SSS ∼ moisture
threshold for low clouds]

 ETKF  : ∂ SST  ∂ cldfrc_rhminl
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CESM: bias reduction given observations
[SST & SSS moisture]
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CESM: cost function values for MARGO synthetic
experiment

COMP.name xt xb xa – ETKF60 xa – ETKF60+GA.y xa – pEKS xa – pMKS.f03 pIKS.f03+br
Jy (θ) 373.39 64.95 61.23 91.81 50.24 48.88
J (θ) 373.39 66.43 66.83 93.13 51.85 55.20
1Units as described in Table 1.

Note: PIKS, pMKS required 34 integrations, ETKF required 61
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Conclusions

I Most of the current work in paleoDA is actually on the
forward operators (Paleoclimate proxy model [PSM]).
Moreover, there is an open debate about how model and
observations should be compared quantitatively, which is
the basis for developing H.

I As models converge towards their climatology after some
time, it seems the perturbed physics is a) a posible way of
recovering the power spectrum showed by paleoproxy
observations and b) a possible mechanism to create the
background statistics needed for the assimilation

I Our tests indicate that ≥ multidecadal analysis of past
climates (no background covariance at hand) the iterative
methods based on OAT perturbations for each degree of
freedom (assumed low-dimensional) beat ETKF (ensemble
sensititivy) from a computational and statistical point of
view.




