Towards operational implementation of the Object Oriented Prediction System at ECMWF

Marcin Chrust, Mats Hamrud, Olivier Marsden, Deborah Salmond, Sebastien Massart, Patrick Laloyaux, Peter Lean, Lars Isaksen, Elias Holm, Alan Geer, Stephen English

Aveiro, 2018

Motivation

Figure: Common Framework for Coupled DA. Courtesy Y. Trémolet.

£CERFACS

Facilitate research:

- Saddle point formulation
- Preconditioning
- EnVar
- ..

Figure: Foster and scale collaborations.

Object Oriented Prediction System

Figure: Object Oriented Prediction System. Courtesy Y. Trémolet.

- The high levels Applications use abstract building blocks;
- The Models implement the building blocks;
- OOPS is independent of the Model being driven.

OOPS-IFS status

Path to operations:

- Ring fenced OOPS Cy46R2 later this year - default DA system in RD onwards;
- Operational implementation - 2020-21 - due to Bologna Data Centre project.

OOPS-IFS validation: Tco399-T95-T159

Instrument(s): AIREP AMprofiler EUprofiler JPprofiler PILOT TEMP - Uwind Vwind Area(s): Europe Japan N.Amer N. Hemis S.Hemis Tropics

$Q \curvearrowright$
M. Chrust

Object Oriented Prediction System at ECMWF

OOPS-IFS runtime: Tco1279-T255-T319-T399

Notes:

- Runtime ~1.1x IFS reference;
- This was collected with adjoint tests;
- Debugging output was on;
- GATH_GRID can be optimized away almost completely;
- Restart mechanism was deactivated;
- Communication bound;

Lessons learned: we can't abandon the square root formulation

- Right B-preconditioned formulation change of variables: $d x=\mathbf{B} d x^{\prime}$
$\left(\mathbf{I}+\mathbf{G}^{\mathbf{T}} \mathbf{R}^{\mathbf{- 1}} \mathbf{G B}\right) d x^{\prime}=-\sum d x_{i}^{\prime}+\mathbf{G}^{\boldsymbol{\top}} \mathbf{R}^{-\mathbf{1}} \mathbf{d}$
We solve the above system using a symmetric solver with a modified inner product $d x^{\prime T} \mathbf{B} d x^{\prime}$
- Square root $B^{1 / 2}$ formulation change of variables: $d x=\mathbf{B}^{1 / 2} v=\mathbf{U} v$
$\left(\mathbf{I}+\mathbf{U}^{\boldsymbol{\top}} \mathbf{G}^{\boldsymbol{\top}} \mathbf{R}^{-\mathbf{1}} \mathbf{G} \mathbf{U}\right) v=-\sum v_{i}+\mathbf{U}^{\boldsymbol{\top}} \mathbf{G}^{\boldsymbol{\top}} \mathbf{R}^{-\mathbf{1}} \mathbf{d}$
We solve the above system using a symmetric solver with canonical inner product

Why do we need the $B^{1 / 2}$ formulation in OOPS

Multi-resolution test case: T255/T95/T159

Figure: OOPS; T increments; $500 \mathrm{mb} ; d x_{95}^{159}-d x_{159}^{*} / 2.5$, where $d x_{159}^{*} / 2.5=\mathbf{B}^{159} d x_{95}^{\prime 159} / 2.5$.

Why do we need the $B^{1 / 2}$ formulation in OOPS

Multi-resolution test case: T255/T95/T159

Figure: IFS; T increments difference; $500 \mathrm{mb} ; d x_{95}^{159}-d x_{159}^{*}$, where $d x_{159}^{*}=\mathbf{U}^{159} d v_{95}^{159}$.

Lessons learned 2 - IFS is overwhelmingly complex and difficult to understand

IFS operators

- $\hat{G} d x=y_{0}+G d x-\left(y_{0}-\mathcal{G} x_{H R}\right)-y_{0}=G d x-d$
- $\hat{G}^{T} d y=G^{T} d y$
- $\hat{U} d v=U d v-d x_{f g}$
- $\hat{U}^{T} d x=U^{T} d x$

Evaluation of a gradient of the cost function (SIM4D):

$$
\begin{aligned}
g & =d v+\hat{U}^{T} \hat{G}^{T} R^{-1} \hat{G} \hat{U} d v= \\
& =d v+U^{T} G^{T} R^{-1}\left[G\left(U d v-d x_{f g}\right)+d\right]
\end{aligned}
$$

In particular the evaluation of the initial gradient:

$$
\begin{aligned}
g_{0} & =d v_{f g}+\hat{U}^{T} \hat{G}^{T} R^{-1} \hat{G} \hat{U} d v_{f g}= \\
& =d v_{f g}+U^{T} G^{T} R^{-1}\left[G\left(U d v_{f g}-d x_{f g}\right)+d\right]= \\
& =d v_{f g}+U^{T} G^{T} R^{-1} d
\end{aligned}
$$

Variational Bias Correction implementation in IFS

IFS: initial gradient calculation

$$
\begin{aligned}
g_{0} & =\left[\begin{array}{c}
d v_{f g} \\
0
\end{array}\right]+\left[\begin{array}{ll}
U^{T} & \\
& \widetilde{U}^{T}
\end{array}\right]\left[\begin{array}{l}
G^{T} \\
P^{T}
\end{array}\right] R^{-1}\left[\begin{array}{ll}
G & P
\end{array}\right]\left[\begin{array}{ll}
U & \\
& \widetilde{U}
\end{array}\right]\left[\begin{array}{c}
d v_{f g} \\
0
\end{array}\right]- \\
& -\left[\begin{array}{cc}
U^{T} & \widetilde{U}^{T}
\end{array}\right]\left[\begin{array}{l}
G^{T} \\
P^{T}
\end{array}\right] R^{-1}\left[\begin{array}{ll}
G & P
\end{array}\right]\left[\begin{array}{l}
d x_{f g} \\
d \beta_{f g}
\end{array}\right]+\left[\begin{array}{ll}
U^{T} & \\
& \widetilde{U}^{T}
\end{array}\right]\left[\begin{array}{l}
G^{T} \\
P^{T}
\end{array}\right] R^{-1} d= \\
& =\left[\begin{array}{c}
d v_{f g} \\
0
\end{array}\right]+\left[\begin{array}{l}
U^{T} G^{T} R^{-1} G U d v_{f g} \\
\widetilde{U}^{T} P^{T} R^{-1} G U d v_{f g}
\end{array}\right]-\left[\begin{array}{l}
U^{T} G^{T} R^{-1} G d x_{f g}+U^{T} G^{T} R^{-1} P d \beta_{f g} \\
\widetilde{U}^{T} P^{T} R^{-1} G d x_{f g}+\widetilde{U}^{T} P^{T} R^{-1} P d \beta_{f g}
\end{array}\right]+\left[\begin{array}{l}
U^{T} G^{T} R^{-1} d \\
\widetilde{U}^{T} P^{T} R^{-1} d
\end{array}\right]= \\
& \approx\left[\begin{array}{c}
d v_{f g} \\
0
\end{array}\right]-\left[\begin{array}{l}
U^{T} G^{T} R^{-1} P d \beta_{f g} \\
\widetilde{U}^{T} P^{T} R^{-1} P d \beta_{f g}
\end{array}\right]+\left[\begin{array}{l}
U^{T} G^{T} R^{-1} d \\
\widetilde{U}^{T} P^{T} R^{-1} d
\end{array}\right]= \\
& =\left[\begin{array}{c}
d v_{f g} \\
0
\end{array}\right]+\left[\begin{array}{l}
U^{T} G^{T} R^{-1}\left(d-P d \beta_{f g}\right) \\
\widetilde{U}^{T} P^{T} R^{-1}\left(d-P d \beta_{f g}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
d v_{f g} \\
0
\end{array}\right]+\left[\begin{array}{l}
U^{T} G^{T} \\
\widetilde{U}^{T} P^{T}
\end{array}\right] R^{-1}\left(d-P d \beta_{f g}\right)= \\
& =\left[\begin{array}{c}
d v_{f g} \\
0
\end{array}\right]+\left[\begin{array}{ll}
U^{T} & \widetilde{U}^{T}
\end{array}\right]\left[\begin{array}{c}
G^{T} \\
P^{T}
\end{array}\right] R^{-1}\left(d-P d \beta_{f g}\right)
\end{aligned}
$$

Variational Bias Correction implementation

FG departure mean (solid) and standard deviation (dot-dash) and bias (thick) Instrument(s): AQUA metop-a metop-b noaa-15 noaa-18 noaa-19 - AMSU-A Area(s): N.Hemis S.Hemis Tropics

Figure: Non-incremental general OOPS VarBC implementation vs IFS. T255/T95/T159 experiment.

Lessons learned 3 - Proper implementation rather than a hack can sometimes be more expensive and more time consuming: Constrained VarBC

Non-linear cost function $\mathcal{J}_{o}^{c}(\beta)=\frac{1}{2} \frac{\left(\mathcal{P}(\beta)-b_{o}\right)^{2}}{\sigma_{c}^{2}}$

- $\mathcal{P}(\beta)$ is the non-linear bias correction operator,
- β is the bias correction parameter vector,
- b_{o} is the bias anchoring state vector and,
- σ_{c} is a weighting factor/

Quadratic cost function

$$
\begin{aligned}
J_{o}^{c}(d \beta) & =\frac{1}{2} \frac{\left(\mathcal{P}(\beta)+P(d \beta)-b_{o}\right)^{2}}{\sigma_{c}^{2}}=\frac{1}{2} \frac{\left(b+P(d \beta)-b_{o}\right)^{2}}{\sigma_{c}^{2}}= \\
& =\frac{1}{2} \frac{\left(P(d \beta)-\left(b_{o}-b\right)\right)^{2}}{\sigma_{c}^{2}}=\frac{1}{2} \frac{\left(P(d \beta)-d_{c}\right)^{2}}{\sigma_{c}^{2}}
\end{aligned}
$$

$\underline{\text { Gradient of the quadratic cost function }}$

$$
\frac{\partial J_{o}^{c}(d \beta)}{\partial(d \beta)}=P^{T} \frac{1}{\sigma_{c}^{2}} P d \beta-P^{T} \frac{1}{\sigma_{c}^{2}} d_{c}
$$

Constrained VarBC

OOPS implementation Let's introduce the constrained VarBC term into the gradient of the quadratic cost function

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
I & \\
& \widetilde{U}_{\beta, k}^{T} B_{\beta}^{-1} \widetilde{U}_{\beta, k}
\end{array}\right]+\right. & {\left.\left[\begin{array}{cc}
U^{T} G^{T} R^{-1} G U & U^{T} G^{T} R^{-1} P \widetilde{U}_{\beta, k} \\
\widetilde{U}_{\beta, k}^{T} P^{T} R^{-1} G U & \widetilde{U}_{\beta, k}^{T} P^{T}\left(R^{-1}+\frac{1}{\sigma_{c}^{2}}\right) P \widetilde{U}_{\beta, k}
\end{array}\right]\right)\left[\begin{array}{c}
d v_{k} \\
d v_{\beta, k}
\end{array}\right]=} \\
& {\left[\begin{array}{cc}
-\sum_{j=0}^{k-1} d v_{j} \\
-\sum_{j=0}^{k-1} \widetilde{U}_{\beta, k}^{T} B_{\beta}^{-1} d \beta_{j}
\end{array}\right]+\left[\begin{array}{cc}
\widetilde{U}_{\beta, k}^{T} P^{T}\left(R^{\top} G^{T} R^{-1} d_{k-1}+\frac{1}{\sigma_{c}^{2}} d_{c, k-1}\right)
\end{array}\right] }
\end{aligned}
$$

Which can be written as:

$$
\begin{array}{r}
\left(\left[\begin{array}{ll}
I & \widetilde{U}_{\beta, k}^{T} B_{\beta}^{-1} \widetilde{U}_{\beta, k}
\end{array}\right]+\left[\begin{array}{ll}
U^{T} & \\
& \widetilde{U}_{\beta, k}^{T}
\end{array}\right]\left[\begin{array}{ll}
G^{T} & \\
P^{T} & P^{T}
\end{array}\right]\left[\begin{array}{ll}
R^{-1} & \\
& \frac{1}{\sigma_{c}^{2}}
\end{array}\right]\left[\begin{array}{ll}
G & P \\
& P
\end{array}\right]\left[\begin{array}{ll}
U & \\
& \widetilde{U}_{\beta, k}
\end{array}\right]\right)\left[\begin{array}{c}
d v_{k} \\
d v_{\beta, k}
\end{array}\right]= \\
\\
{\left[\begin{array}{c}
-\sum_{j=0}^{k-1} d v_{j} \\
-\sum_{j=0}^{k-1} \widetilde{U}_{\beta, k}^{T} B_{\beta}^{-1} d \beta_{j}
\end{array}\right]+\left[\begin{array}{cc}
U^{T} & \widetilde{U}_{\beta, k}^{T}
\end{array}\right]\left[\begin{array}{ll}
G^{T} & \\
P^{T} & P^{T}
\end{array}\right]\left[\begin{array}{ll}
R^{-1} d_{k-1} & \\
& \frac{1}{\sigma_{c}^{2}} d_{c, k-1}
\end{array}\right]}
\end{array}
$$

Lessons learned 4 - Devil is in the detail: Second-level preconditioning

Limited memory preconditioners - general formulation
Let \mathbf{A} be an $n \times n$ symmetric positive definite matrix, and let $\mathbf{S}_{\mathbf{I}}$ be a $n \times I$ matrix, with $/ \ll n$, whose column $\mathbf{s}_{\mathbf{1}}, . ., \mathbf{s}_{\mathbf{I}}$ are assumed to be A-conjugate, i.e.

$$
\mathbf{s}_{\mathbf{i}}^{\top} \mathbf{A s}_{\mathbf{j}}\left\{\begin{array}{lll}
>0 & \text { if } & j=i \\
=0 & \text { if } & j \neq i
\end{array}\right\}
$$

The limited memory preconditioner is defined as:

$$
K_{1}=\left(I_{n}-\sum_{i=1}^{1} \frac{s_{i} s_{i}^{\top}}{s_{i}^{\top} A s_{i}} \mathbf{A}\right)\left(I_{n}-\sum_{i=1} \mathbf{I A} \frac{s_{i} s_{i}^{\top}}{s_{i}^{\top} A s_{i}}\right)+\sum_{i=1}^{1} \frac{s_{i} s_{i}^{\top}}{s_{i}^{\top} A s_{i}}
$$

Second-level preconditioning

Spectral LMP

Normalized eigenpair $\left(\lambda_{i}, \mathbf{v}_{\mathbf{i}}\right)$ of an $n \times n$ symmetric positive definite matrix \mathbf{A} satisfy:

$$
\mathbf{v}_{\mathbf{i}}^{\top} \mathbf{A} \mathbf{v}_{\mathbf{j}}\left\{\begin{array}{c}
\lambda_{i}>0 \\
=0 \quad \text { if } \quad j=i \\
=0 \quad j \neq i
\end{array}\right\}
$$

and

$$
\mathbf{v}_{\mathbf{i}}^{\boldsymbol{\top}} \mathbf{v}_{\mathbf{j}}\left\{\begin{array}{lll}
=1 & \text { if } & j=i \\
=0 & \text { if } & j \neq i
\end{array}\right\}
$$

Using $\mathbf{A} \mathbf{u}_{\mathbf{i}}=\lambda \mathbf{u}_{\mathbf{i}}$, we get the following expression for the Spectral LMP:

$$
\mathbf{K}_{1}^{\text {spectral }}=\mathbf{I}_{\mathbf{n}}+\sum_{i=1}^{\ell}\left(\lambda_{i}-1\right) \mathbf{v}_{\mathbf{i}} \mathbf{v}_{\mathbf{i}}^{\top} \approx J^{\prime \prime}
$$

In practice we use Ritz pairs $\left(\tilde{\lambda}_{i}, \tilde{\mathbf{v}}_{i}\right)$, which shall be orthonormal and \mathbf{A} conjugate.

Second-level preconditioning

Figure: Tco399-T95-T159; no preconditioning

Figure: Tco399-T95-T159; with preconditioning

Figure: Tco399-T95-T159-T255; no preconditioning

Figure: Tco399-T95-T159-T255; with preconditioning

Second-level preconditioning

If preconditioning has been employed, the Ritz vectors and values provide approximation to preconditioned Hessian, $\mathbf{M}^{-\frac{1}{2}} J^{\prime \prime} \mathbf{M}^{-\frac{1}{2}}$, of the form

$$
\mathbf{M}^{-\frac{1}{2}} J^{\prime \prime} \mathbf{M}^{-\frac{1}{2}} \approx \mathbf{I}+\sum_{i=1}^{K}\left(\lambda_{i}-1\right) \mathbf{v}_{\mathbf{i}} \mathbf{v}_{\mathbf{i}}^{\top}
$$

Multiplying to the left and right by $M^{\frac{1}{2}}$, gives

$$
\begin{gathered}
J^{\prime \prime} \approx \mathbf{M}+\sum_{i=1}^{K}\left(\lambda_{i}-1\right)\left(\mathbf{M}^{\frac{1}{2}} \mathbf{v}_{\mathbf{i}}\right)\left(\mathbf{M}^{\frac{1}{2}} \mathbf{v}_{\mathbf{i}}\right)^{\boldsymbol{\top}} \\
J^{\prime \prime} \approx \mathbf{I}+\sum_{i=1}^{L+K} \mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}}^{\top}
\end{gathered}
$$

where:

$$
\mathbf{s}_{\mathbf{i}}=\left\{\begin{array}{clc}
\left(\mu_{i}-1\right)^{\frac{1}{2}} \mathbf{w}_{\mathbf{i}} & \text { for } & i=1 . . L \\
\left(\lambda_{i-L}-1\right)^{\frac{1}{2}} \mathbf{M}^{\frac{1}{2}} \mathbf{v}_{\mathbf{i}-\mathbf{L}} & \text { for } & i=L+1 . . L+K
\end{array}\right\}
$$

Second-level preconditioning

When combining Ritz vectors from multiple minimizations, in general:

$$
\tilde{\mathbf{s}}_{\mathrm{i}}^{\mathrm{T}} \tilde{\mathbf{s}}_{\mathrm{j}}\left\{\begin{array}{lll}
\neq 1 & \text { if } & j=i \\
\neq 0 & \text { if } & j \neq i
\end{array}\right\}
$$

In this case the approximation to the inverse of the Hessian $\left(J^{\prime \prime}\right)^{-1}$ is not readily available.

We need to resort to the Shermann-Morrison-Woodbury formula:

$$
(\mathbf{A}+\mathbf{U C V})^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{U}\left(\mathbf{C}^{-1}+\mathbf{V A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V A}^{-1}
$$

Which then reads:

$$
\begin{aligned}
\left(\mathbf{I}_{\mathbf{n}}+\mathbf{S} \mathbf{I}_{\ell} \mathbf{S}^{\top}\right)^{-1} & =\mathbf{I}_{\mathbf{n}}-\mathbf{S}\left(\mathbf{I}_{\ell}+\mathbf{S}^{\top} \mathbf{S}\right)^{-\mathbf{1}} \mathbf{S}^{\top} \\
& =\mathbf{I}_{\mathbf{n}}-\mathbf{S}\left(\mathbf{L}^{-1}\right)^{\top} \mathbf{L}^{-1} \mathbf{S}^{\top} \\
& =\mathbf{I}_{\mathbf{n}}-\overline{\mathbf{S}} \overline{\mathbf{S}}^{\top} \approx\left(\mathbf{J}^{\prime \prime}\right)^{-1}
\end{aligned}
$$

Second-level preconditioning

Recall $\overline{\mathbf{S}}$ is a matrix such that $\mathbf{I}_{\mathbf{n}}-\overline{\mathbf{S}} \overline{\mathbf{S}}^{\boldsymbol{T}}=\left(\mathbf{J}^{\prime \prime}\right)^{-1}$, we can perform QR decomposition:

$$
\overline{\mathbf{S}}^{\boldsymbol{\mathbf { S }}}=\mathbf{Q}^{\boldsymbol{\top}}(\mathbf{Q} \overline{\mathbf{S}})(\mathbf{Q} \overline{\mathbf{S}})^{\boldsymbol{\top}} \mathbf{Q}
$$

where:

- \mathbf{Q} is an orthogonal matrix: $\mathbf{Q Q}^{T}=\mathbf{I}$
- $\mathbf{Q} \overline{\mathbf{S}}$ is an upper triangular matrix
- ($\mathbf{Q} \overline{\mathbf{S}})(\mathbf{Q} \overline{\mathbf{S}})^{T}$ has ℓ non-zero eigenvalues ρ_{i} with corresponding eigenvectors \mathbf{p}_{i} The required orthonormal preconditioning vectors are given by $\mathbf{w}_{\mathbf{i}}=\mathbf{Q}^{\top} \mathbf{p}_{\mathbf{i}}$. To cast in standard form denote $\mu_{i}=1-\frac{1}{\rho_{i}}$:

$$
\begin{gathered}
\mathbf{K}_{\mathbf{1}}^{\text {spectral }}=\mathbf{I}_{\mathbf{n}}+\sum_{i=1}^{\ell}\left(\mu_{i}-1\right) \mathbf{w}_{\mathbf{i}} \mathbf{w}_{\mathbf{i}}^{\top} \approx \mathbf{J}^{\prime \prime} \\
\left(\mathbf{K}_{\mathbf{1}}^{\text {spectral }}\right)^{-1}=\mathbf{I}_{\mathbf{n}}+\sum_{i=1}^{\ell}\left(\frac{1}{\mu_{i}}-1\right) \mathbf{w}_{\mathbf{i}} \mathbf{w}_{\mathbf{i}}^{\boldsymbol{\top}} \approx\left(\mathbf{J}^{\prime \prime}\right)^{-1}
\end{gathered}
$$

NOTE: we need to form $\ell \times \ell$ matrix formed by non-zero elements of $(\mathbf{Q U})(\mathbf{Q U})^{T}$; to do that we need to move sections of preconditioning vectors through the $\mathrm{C}++/$ Fortan interface.

Second-level preconditioning

Control vector is in the wavelet space; A non-orthogonal transform on the sphere is defined by a set of functions of great-circle distance:

$$
\left\{\psi_{j}(|\mathbf{r}|) ; j=1 \ldots K\right\}
$$

with the property

$$
\sum_{j} \hat{\psi}_{j}^{2}(n)=1
$$

the "transform" pair is then defined:

$$
f_{j}=\psi_{j} \otimes f, \quad f=\sum_{j} \psi_{j} \otimes f_{j}
$$

Figure: Weighting functions for the different wavenumber bands in "Wavelet" J_{b}. Courtesy M. Fisher.

OOPS project board announced the project has achieved targets and will be closed. We will hold an ECMWF wide celebration on the 30th of August.
Summary:

- It took several years and a number of dedicated people to refactor IFS and interface it to OOPS; this work is not complete;
- OOPS system is much more resilient and robust;
- It may be more difficult to implement certain new ideas properly in OOPS rather that hack them in as before, but it is the only sustainable path;
- C++/Fortran mixed code can be a challenge; initial learning curve is steep;
- IFS required tailored solutions, but object orientation makes the developments straight forward;
M. Chrust Object Oriented Prediction System at ECMWF

