Towards operational implementation of the Object Oriented Prediction System at ECMWF

Marcin Chrust, Mats Hamrud, Olivier Marsden, Deborah Salmond, Sebastien Massart, Patrick Laloyaux, Peter Lean, Lars Isaksen, Elias Holm, Alan Geer, Stephen English

Aveiro, 2018

Motivation

Figure: Common Framework for Coupled DA. Courtesy Y. Trémolet.

Figure: Foster and scale collaborations.

Facilitate research:

• Saddle point formulation

• • = • • = •

- Preconditioning
- EnVar
- ..

Object Oriented Prediction System

Figure: Object Oriented Prediction System. Courtesy Y. Trémolet.

- The high levels Applications use abstract building blocks;
- The Models implement the building blocks;
- OOPS is independent of the Model being driven.

Path to operations:

- Ring fenced OOPS Cy46R2 later this year default DA system in RD onwards;
- Operational implementation 2020-21 due to Bologna Data Centre project.

OOPS-IFS validation: Tco399-T95-T159

sure [hPa]

OOPS

IFS

100% = Object Oriented Prediction System at ECMWF

100 101

FG std. dev. [%, normalised]

OOPS-IFS runtime: Tco1279-T255-T319-T399

	ame of the executable : /fws4/lb/work/rd/das/gz91/bin/ifs4dvar.x										
Number of MPI-tasks : 704											
Number of OpenMP-threads : 18											
	Wall-tim	es over all	MPI-tasks	(secs) : Min	n=3499.250,	Max=3679.3-	10, Avg=3	631.339.	StDev=20.393		
Routines whose total time (i.e. sum) > 0.000 secs will be included in the listing											
	Avg-%	Avg.time	Min.time	Max.time	Incl.min	Incl.max	St.dev	Imbal-%	# of calls	:	Name of the routine
	11.12%	403.624	393.617	459.839	393.619	459.844		14.40%	4628096		
	7,90%	287.026	201.524	501.521	201.657	501.649	38.060	59.82%	43201664		TRGTOL
	7.83%		186.775			354.634		47.33%			TRLTCM
	4.30%	156.270	132.555	182.268	132.589	182.303	9.581	27.27%	16349696		TRMTOL
	4.83%				127.500			38.08%	16349696		TRLTOG
	0.00%	0.109	76.804	76.804	76.805	76.885	2.895	0.00%			GRIB_API:IGRIB_WRITE_BYTES_INT
	2.55%	92,463	71.524	114,983	71.528	114,990	8,005	37,80%	10115776		SLCOMM: SLCOMM_INT
		34.835					0.060	3.38%			VARBC_SETUP:LOAD_TABLE
	2.39%	86.751	31.997	95.840	31.999	95.842	19.339	65.96%	3271488		
	0.96%	34,918	30,409	46,371	30,648	46,622	2,150	34,42%			BRPTOB
	0.92%	33,470	28,520	42.293	28.523	42.296		32,56%	46573696		LWOPAD
	0.88%		27.139	37.250				27.14%	46573696		LWOR
	0.86%	31.182	25.736	41.865	25.739	41.870	3.288	38.53%	10110144		SLCOMM2A:SLCOMM2A_INT
2	0.73%	26,340	23,764		23,775	27.224	0.481	12.67%	4124736		38 CONTROL VECTORS PARA MOD:DOT PRODUCT 38CV 38CV WEIGHT
	0.74%	26,750	22,890	31.104	22.895	31.108	1.723	26.41%	213265536		CLOUDSC
	0.87%	31.430	22.469	43.908	22.702	44.349	4.270	48.83%	37599577664		CUADJTQSAD
	1.84%	66.991	22.350	82.269	22.532	82.445	7.262	72.83%	4625280		ORDER_INDEPENDENT_SUMMATION_MOD:ORDER_INDEP_GLOBAL_SUM
	0.66%	23,923	20,900	28,185	35,249	47,598	1.620	25.85%	58392576		SWILAD
	0.72%	26,295	20,603	40,768	23,258	43.257	2,971	49.46%	13592832		TRMTOS
	0.00%	0.029	20.064	20.064	20,065	20.065	0.756	0,00%	7816		GRIB API:IGRIB READ FROM FILE
	0.53%	19.124	18.193	22.242	299.274	300.916	1.267	18.20%	223168		FIELD_CONTAINER_OPER_MOD:FIELD_CONTAINER_INTERP
	0.93%	33.745	17.589	43.732	17.591	43.734	4.555	59.78%	46573696		LNCAD

Notes:

- Runtime ~1.1x IFS reference;
- This was collected with adjoint tests;
- · Debugging output was on;
- GATH_GRID can be optimized away almost completely;

э

- Restart mechanism was deactivated;
- · Communication bound;

< 日 > < 同 > < 三 > < 三 >

Lessons learned: we can't abandon the square root formulation

• Right *B*-preconditioned formulation

change of variables: $dx = \mathbf{B}dx'$

$$(\mathbf{I} + \mathbf{G}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{G} \mathbf{B}) dx' = -\sum dx'_i + \mathbf{G}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{d}$$

We solve the above system using a symmetric solver with a modified inner product $dx'^T \mathbf{B} dx'$

• Square root $B^{1/2}$ formulation

change of variables: $dx = \mathbf{B}^{1/2}v = \mathbf{U}v$

$$(\mathbf{I} + \mathbf{U}^{\mathsf{T}}\mathbf{G}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{G}\mathbf{U})\mathbf{v} = -\sum v_i + \mathbf{U}^{\mathsf{T}}\mathbf{G}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{d}$$

We solve the above system using a symmetric solver with canonical inner product

Why do we need the $B^{1/2}$ formulation in OOPS

Multi-resolution test case: T255/T95/T159

Figure: OOPS; T increments; 500mb; $dx_{95}^{159} - dx_{159}^{*}/2.5$, where $dx_{159}^{*}/2.5 = \mathbf{B}^{159} dx_{95}^{'159}/2.5$.

Image: A Image: A

Why do we need the $B^{1/2}$ formulation in OOPS

Multi-resolution test case: T255/T95/T159

Figure: IFS; T increments difference; 500mb; $dx_{95}^{159} - dx_{159}^*$, where $dx_{159}^* = \mathbf{U}^{159} dv_{95}^{159}$.

同 ト イ ヨ ト イ ヨ ト

Lessons learned 2 - IFS is overwhelmingly complex and difficult to understand

IFS operators

•
$$\hat{G}dx = y_0 + Gdx - (y_0 - Gx_{HR}) - y_0 = Gdx - d$$

• $\hat{G}^T dy = G^T dy$

•
$$\hat{U}dv = Udv - dx_{fg}$$

•
$$\hat{U}^T dx = U^T dx$$

Evaluation of a gradient of the cost function (SIM4D):

$$g = dv + \hat{U}^T \hat{G}^T R^{-1} \hat{G} \hat{U} dv = = dv + U^T G^T R^{-1} [G (Udv - dx_{fg}) + d]$$

In particular the evaluation of the initial gradient:

$$g_0 = dv_{fg} + \hat{U}^T \hat{G}^T R^{-1} \hat{G} \hat{U} dv_{fg} =$$

= $dv_{fg} + U^T G^T R^{-1} [G (U dv_{fg} - dx_{fg}) + d] =$
= $dv_{fg} + U^T G^T R^{-1} d$

Variational Bias Correction implementation in IFS

IFS: initial gradient calculation

$$g_{0} = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} \\ & \tilde{U}^{T} \end{bmatrix} \begin{bmatrix} G^{T} \\ P^{T} \end{bmatrix} R^{-1} \begin{bmatrix} G & P \end{bmatrix} \begin{bmatrix} U \\ & \tilde{U} \end{bmatrix} \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} - \\ & - \begin{bmatrix} U^{T} \\ & \tilde{U}^{T} \end{bmatrix} \begin{bmatrix} G^{T} \\ P^{T} \end{bmatrix} R^{-1} \begin{bmatrix} G & P \end{bmatrix} \begin{bmatrix} dx_{fg} \\ d\beta_{fg} \end{bmatrix} + \begin{bmatrix} U^{T} \\ & \tilde{U}^{T} \end{bmatrix} \begin{bmatrix} G^{T} \\ P^{T} \end{bmatrix} R^{-1} d = \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} G^{T} R^{-1} GUdv_{fg} \\ \tilde{U}^{T} P^{T} R^{-1} GUdv_{fg} \end{bmatrix} - \begin{bmatrix} U^{T} G^{T} R^{-1} Gdx_{fg} + U^{T} G^{T} R^{-1} Pd\beta_{fg} \\ \tilde{U}^{T} P^{T} R^{-1} GUdv_{fg} \end{bmatrix} + \begin{bmatrix} U^{T} G^{T} R^{-1} Gdx_{fg} + \tilde{U}^{T} P^{T} R^{-1} Pd\beta_{fg} \\ \tilde{U}^{T} P^{T} R^{-1} Gdx_{fg} + \tilde{U}^{T} P^{T} R^{-1} Pd\beta_{fg} \end{bmatrix} + \begin{bmatrix} U^{T} G^{T} R^{-1} d \\ \tilde{U}^{T} P^{T} R^{-1} d \\ \tilde{U}^{T} P^{T} R^{-1} d \\ \tilde{U}^{T} P^{T} R^{-1} (d - Pd\beta_{fg}) \end{bmatrix} \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} G^{T} R^{-1} (d - Pd\beta_{fg}) \\ \tilde{U}^{T} P^{T} R^{-1} (d - Pd\beta_{fg}) \end{bmatrix} \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} G^{T} \\ \tilde{U}^{T} P^{T} \end{bmatrix} R^{-1} (d - Pd\beta_{fg}) = \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} G^{T} \\ \tilde{U}^{T} P^{T} \end{bmatrix} R^{-1} (d - Pd\beta_{fg}) = \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} G^{T} \\ \tilde{U}^{T} P^{T} \end{bmatrix} R^{-1} (d - Pd\beta_{fg}) = \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} G^{T} \\ \tilde{U}^{T} P^{T} \end{bmatrix} R^{-1} (d - Pd\beta_{fg}) = \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} G^{T} \\ \tilde{U}^{T} P^{T} \end{bmatrix} R^{-1} (d - Pd\beta_{fg}) = \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} & \tilde{U}^{T} \\ \tilde{U}^{T} P^{T} \end{bmatrix} R^{-1} (d - Pd\beta_{fg}) = \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} & \tilde{U}^{T} \\ \tilde{U}^{T} P^{T} \end{bmatrix} R^{-1} (d - Pd\beta_{fg}) = \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} & \tilde{U}^{T} \\ \tilde{U}^{T} P^{T} \end{bmatrix} R^{-1} (d - Pd\beta_{fg}) = \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} & \tilde{U}^{T} \\ \tilde{U}^{T} P^{T} \end{bmatrix} R^{-1} (d - Pd\beta_{fg}) = \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} & \tilde{U}^{T} \\ \tilde{U}^{T} P^{T} \end{bmatrix} R^{-1} (d - Pd\beta_{fg}) = \\ & = \begin{bmatrix} dv_{fg} \\ 0 \end{bmatrix} + \begin{bmatrix} U^{T} & \tilde{U}^{T} \\ \tilde{U}^{T} P^{T} \end{bmatrix} R^{-1} (d - Pd\beta_{fg}) \end{bmatrix}$$

Variational Bias Correction implementation

Figure: Non-incremental general OOPS VarBC implementation vs IFS. T255/T95/T159 experiment.

- 4 同 6 4 日 6 4 日 6

Lessons learned 3 - Proper implementation rather than a hack can sometimes be more expensive and more time consuming: Constrained VarBC

<u>Non-linear cost function</u> $\mathcal{J}_{o}^{c}(\beta) = \frac{1}{2} \frac{(\mathcal{P}(\beta) - b_{o})^{2}}{\sigma_{c}^{2}}$

- *P*(β) is the non-linear bias correction operator,
- β is the bias correction parameter vector,
- b_o is the bias anchoring state vector and,
- σ_c is a weighting factor/

Quadratic cost function

$$J_o^c(d\beta) = \frac{1}{2} \frac{(\mathcal{P}(\beta) + P(d\beta) - b_o)^2}{\sigma_c^2} = \frac{1}{2} \frac{(b + P(d\beta) - b_o)^2}{\sigma_c^2} = \frac{1}{2} \frac{(P(d\beta) - (b_o - b))^2}{\sigma_c^2} = \frac{1}{2} \frac{(P(d\beta) - d_c)^2}{\sigma_c^2}$$

Gradient of the quadratic cost function

$$\frac{\partial J_o^c(d\beta)}{\partial (d\beta)} = P^T \frac{1}{\sigma_c^2} P d\beta - P^T \frac{1}{\sigma_c^2} dc$$

Constrained VarBC

OOPS implementation Let's introduce the constrained VarBC term into the gradient of the quadratic cost function

$$\begin{pmatrix} \begin{bmatrix} I & \tilde{U}_{\beta,k}^{\mathsf{T}} B_{\beta}^{-1} \tilde{U}_{\beta,k} \end{bmatrix} + \begin{bmatrix} U^{\mathsf{T}} G^{\mathsf{T}} R^{-1} G U & U^{\mathsf{T}} G^{\mathsf{T}} R^{-1} P \tilde{U}_{\beta,k} \\ \tilde{U}_{\beta,k}^{\mathsf{T}} P^{\mathsf{T}} R^{-1} G U & \tilde{U}_{\beta,k}^{\mathsf{T}} P^{\mathsf{T}} (R^{-1} + \frac{1}{\sigma_c^2}) P \tilde{U}_{\beta,k} \end{bmatrix} \end{pmatrix} \begin{bmatrix} dv_k \\ dv_{\beta,k} \end{bmatrix} = \begin{bmatrix} -\sum_{j=0}^{k-1} dv_j \\ -\sum_{j=0}^{k-1} U_{\beta,k}^{\mathsf{T}} B_{\beta}^{-1} d\beta_j \end{bmatrix} + \begin{bmatrix} U^{\mathsf{T}} G^{\mathsf{T}} R^{-1} d_{k-1} \\ \tilde{U}_{\beta,k}^{\mathsf{T}} P^{\mathsf{T}} (R^{-1} d_{k-1} + \frac{1}{\sigma_c^2} d_{c,k-1}) \end{bmatrix}$$

Which can be written as:

$$\begin{pmatrix} \begin{bmatrix} I & & \\ & \tilde{U}_{\beta,k}^{T} B_{\beta}^{-1} \tilde{U}_{\beta,k} \end{bmatrix} + \begin{bmatrix} U^{T} & & \\ & \tilde{U}_{\beta,k}^{T} \end{bmatrix} \begin{bmatrix} G^{T} & & P^{T} \end{bmatrix} \begin{bmatrix} R^{-1} & & \\ & \frac{1}{\sigma_{c}^{2}} \end{bmatrix} \begin{bmatrix} G & P \\ & P \end{bmatrix} \begin{bmatrix} U & & \\ & \tilde{U}_{\beta,k} \end{bmatrix} \end{pmatrix} \begin{bmatrix} dv_{k} \\ dv_{\beta,k} \end{bmatrix} = \begin{bmatrix} & -\sum_{j=0}^{k-1} dv_{j} \\ & -\sum_{j=0}^{k-1} \tilde{U}_{\beta,k}^{T} B_{\beta}^{-1} d\beta_{j} \end{bmatrix} + \begin{bmatrix} U^{T} & & \\ & \tilde{U}_{\beta,k}^{T} \end{bmatrix} \begin{bmatrix} G^{T} & & P^{T} \end{bmatrix} \begin{bmatrix} R^{-1} d_{k-1} & & \\ & & \frac{1}{\sigma_{c}^{2}} d_{c,k-1} \end{bmatrix}$$

Lessons learned 4 - Devil is in the detail: Second-level preconditioning

Limited memory preconditioners - general formulation

Let **A** be an $n \times n$ symmetric positive definite matrix, and let **S**_I be a $n \times I$ matrix, with $I \ll n$, whose column $s_1, ..., s_I$ are assumed to be *A*-conjugate, i.e.

$$\mathbf{s_i^T A s_j} \begin{cases} > 0 & if \quad j = i \\ = 0 & if \quad j \neq i \end{cases}$$

The limited memory preconditioner is defined as:

$$\mathbf{K}_{I} = \left(\mathbf{I}_{n} - \sum_{i=1}^{I} \frac{\mathbf{s}_{i} \mathbf{s}_{i}^{\mathsf{T}}}{\mathbf{s}_{i}^{\mathsf{T}} \mathbf{A} \mathbf{s}_{i}} \mathbf{A}\right) \left(\mathbf{I}_{n} - \sum_{i=1}^{I} \mathbf{I} \mathbf{A} \frac{\mathbf{s}_{i} \mathbf{s}_{i}^{\mathsf{T}}}{\mathbf{s}_{i}^{\mathsf{T}} \mathbf{A} \mathbf{s}_{i}}\right) + \sum_{i=1}^{I} \frac{\mathbf{s}_{i} \mathbf{s}_{i}^{\mathsf{T}}}{\mathbf{s}_{i}^{\mathsf{T}} \mathbf{A} \mathbf{s}_{i}}$$

Spectral LMP

Normalized eigenpair $(\lambda_i, \mathbf{v_i})$ of an $n \times n$ symmetric positive definite matrix **A** satisfy:

$$\mathbf{v}_{i}^{\mathsf{T}} \mathbf{A} \mathbf{v}_{j} \begin{cases} \lambda_{i} > 0 & \text{if } j = i \\ = 0 & \text{if } j \neq i \end{cases}$$

and

$$\mathbf{v}_{i}^{\mathsf{T}}\mathbf{v}_{j} \begin{cases} = 1 & if \quad j = i \\ = 0 & if \quad j \neq i \end{cases}$$

Using $\textbf{Au}_{i}=\lambda\textbf{u}_{i},$ we get the following expression for the Spectral LMP:

$$\mathbf{K}_{\mathbf{l}}^{ ext{spectral}} = \mathbf{I}_{\mathbf{n}} + \sum_{i=1}^{\ell} \left(\lambda_i - 1
ight) \mathbf{v}_{\mathbf{i}} \mathbf{v}_{\mathbf{i}}^{\mathsf{T}} pprox J''$$

In practice we use Ritz pairs $(\tilde{\lambda}_i, \tilde{\mathbf{v}}_i)$, which shall be orthonormal and **A** conjugate.

直 マ イヨ マ イヨマ

3

Figure: Tco399-T95-T159; no preconditioning

Figure: Tco399-T95-T159; with preconditioning

Figure: Tco399-T95-T159-T255; no preconditioning

Figure: Tco399-T95-T159-T255; with preconditioning

イロン イロン イヨン イヨン

If preconditioning has been employed, the Ritz vectors and values provide approximation to preconditioned Hessian, $M^{-\frac{1}{2}}J''M^{-\frac{1}{2}}$, of the form

$$\mathsf{M}^{-rac{1}{2}}J''\mathsf{M}^{-rac{1}{2}}pprox \mathsf{I} + \sum_{i=1}^K (\lambda_i - 1) \mathsf{v_i} \mathsf{v_i}^\mathsf{T}$$

Multiplying to the left and right by $\mathbf{M}^{\frac{1}{2}}$, gives

$$egin{aligned} J'' &pprox \mathbf{M} + \sum_{i=1}^K (\lambda_i - 1) (\mathbf{M}^{rac{1}{2}} \mathbf{v}_{\mathbf{i}}) (\mathbf{M}^{rac{1}{2}} \mathbf{v}_{\mathbf{i}})^\mathsf{T} \ & J'' &pprox \mathbf{I} + \sum_{i=1}^{L+K} \mathbf{s}_{\mathbf{i}} \mathbf{s}_{\mathbf{i}}^\mathsf{T} \end{aligned}$$

where:

$$\mathbf{s}_{\mathbf{i}} = \left\{ \begin{array}{ccc} (\mu_i - 1)^{\frac{1}{2}} \mathbf{w}_{\mathbf{i}} & \text{for} & i = 1..L \\ (\lambda_{i-L} - 1)^{\frac{1}{2}} \mathbf{M}^{\frac{1}{2}} \mathbf{v}_{\mathbf{i}-\mathbf{L}} & \text{for} & i = L + 1..L + K \end{array} \right\}$$

When combining Ritz vectors from multiple minimizations, in general:

$$\tilde{\mathbf{s}}_{i}^{\mathsf{T}}\tilde{\mathbf{s}}_{j} \begin{cases} \neq 1 & \text{if } j = i \\ \neq 0 & \text{if } j \neq i \end{cases}$$

In this case the approximation to the inverse of the Hessian $(J'')^{-1}$ is not readily available.

We need to resort to the Shermann-Morrison-Woodbury formula:

$$(\mathbf{A} + \mathbf{U}\mathbf{C}\mathbf{V})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}\left(\mathbf{C}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U}\right)^{-1}\mathbf{V}\mathbf{A}^{-1}$$

Which then reads:

$$\begin{split} \left(\boldsymbol{I}_n + \boldsymbol{S}\boldsymbol{I}_{\ell}\boldsymbol{S}^{\mathsf{T}}\right)^{-1} &=& \boldsymbol{I}_n - \boldsymbol{S}\left(\boldsymbol{I}_{\ell} + \boldsymbol{S}^{\mathsf{T}}\boldsymbol{S}\right)^{-1}\boldsymbol{S}^{\mathsf{T}} \\ &=& \boldsymbol{I}_n - \boldsymbol{S}(\boldsymbol{L}^{-1})^{\mathsf{T}}\boldsymbol{L}^{-1}\boldsymbol{S}^{\mathsf{T}} \\ &=& \boldsymbol{I}_n - \bar{\boldsymbol{S}}\bar{\boldsymbol{S}}^{\mathsf{T}} \approx \left(\boldsymbol{J}''\right)^{-1} \end{split}$$

• • = • • = •

э

Recall \bar{S} is a matrix such that $I_n-\bar{S}\bar{S}^{\mathsf{T}}=(J'')^{-1},$ we can perform QR decomposition:

$$\mathbf{\bar{S}\bar{S}^{\mathsf{T}}} = \mathbf{Q}^{\mathsf{T}}(\mathbf{Q\bar{S}})(\mathbf{Q\bar{S}})^{\mathsf{T}}\mathbf{Q}$$

where:

- **Q** is an orthogonal matrix: $\mathbf{Q}\mathbf{Q}^T = \mathbf{I}$
- QS is an upper triangular matrix
- $(\mathbf{Q}\mathbf{\bar{S}})(\mathbf{Q}\mathbf{\bar{S}})^T$ has ℓ non-zero eigenvalues ρ_i with corresponding eigenvectors \mathbf{p}_i

The required orthonormal preconditioning vectors are given by $\mathbf{w}_{i} = \mathbf{Q}^{\mathsf{T}} \mathbf{p}_{i}$. To cast in standard form denote $\mu_{i} = 1 - \frac{1}{\rho_{i}}$:

$$\begin{split} \mathbf{K}_{\mathbf{I}}^{\mathrm{spectral}} &= \mathbf{I}_{\mathbf{n}} + \sum_{i=1}^{\ell} \left(\mu_{i} - 1 \right) \mathbf{w}_{i} \mathbf{w}_{i}^{\mathsf{T}} \approx \mathbf{J}^{\prime \prime} \\ & \left(\mathbf{K}_{\mathbf{I}}^{\mathrm{spectral}} \right)^{-1} = \mathbf{I}_{\mathbf{n}} + \sum_{i=1}^{\ell} \left(\frac{1}{\mu_{i}} - 1 \right) \mathbf{w}_{i} \mathbf{w}_{i}^{\mathsf{T}} \approx \left(\mathbf{J}^{\prime \prime} \right)^{-1} \end{split}$$

NOTE: we need to form $\ell \times \ell$ matrix formed by non-zero elements of $(\mathbf{QU})(\mathbf{QU})^T$; to do that we need to move sections of preconditioning vectors through the C++/Fortan interface.

Control vector is in the wavelet space; A non-orthogonal transform on the sphere is defined by a set of functions of great-circle distance:

$$\{\psi_j(|\mathbf{r}|); j=1...K\}$$

with the property

$$\sum_{j}\hat{\psi}_{j}^{2}(n)=1$$

the "transform" pair is then defined:

$$f_j = \psi_j \otimes f, \quad f = \sum_j \psi_j \otimes f_j$$

Figure: Weighting functions for the different wavenumber bands in "Wavelet" J_b . Courtesy M. Fisher.

- - E + - E +

э

OOPS project board announced the project has achieved targets and will be closed. We will hold an ECMWF wide celebration on the 30th of August.

Summary:

- It took several years and a number of dedicated people to refactor IFS and interface it to OOPS; this work is not complete;
- OOPS system is much more resilient and robust;
- It may be more difficult to implement certain new ideas properly in OOPS rather that hack them in as before, but it is the only sustainable path;
- C++/Fortran mixed code can be a challenge; initial learning curve is steep;
- IFS required tailored solutions, but object orientation makes the developments straight forward;

Annual Seminar 2018

Earth System Assimilation

10-13 September

http://www.ecmwf.int/en/learning/workshopsand-seminars/en/annual-seminar-2018

All an

M. Chrust

Object Oriented Prediction System at ECMWF

< E

э

∢ ≣⇒