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How can one calibrate a numerical model so that it performs reasonably well for different random operating conditions ?
Objectives

I Define suitable definitions of robustness in the field of computer code calibration
I Develop efficient techniques and algorithms in order to estimate those parameters
I Deal with the high-dimension of the parameter spaces: Dimension reduction

Background: estimation of the bottom friction in a shallow water model

The calibration problem is to be able to find a value of k ∈ K denoted k̂ that matches the best the observations yobs .
We define a loss function, that is the misfit between the observations to the model.

J(k) = 1
2‖M(k)− yobs‖2Σ−1

and we have to perform the following minimisation problem, usually with the help of the adjoint method
k̂ = arg min

k∈K
J(k)

Stochastic Inverse Problem
Now, u ∈ U ∼ U of density pU and yobs = M(kref,uref)

Control variable
k ∈ K Direct Simulation

Environmental variables
U ∈ U random

M(k,u)

Inverse Problem yobs

The loss function is now
J(k,U) = 1

2‖M(k,U)− yobs‖2Σ−1︸ ︷︷ ︸
Random variable

I What criteria to use to “optimize” in a sense J ?
I Evaluating J is time consuming. How to deal with a limited budget of evaluations ?

Which criterion to choose ?
I Global minimum

(k∗,u∗) = arg min
(k,u)

J(k,u) and k̂global = k∗

I Assuming that the environmental variables have little influence:
JE(k) = J(k,E[U]) and k̂E = arg min

k
JE(k) (Classical methods)

−→ Those approaches are not robust: inherent variability of U not taken into account
I Consider the worst-case scenario

Jw(k) = max
u∈U

J(k,u) and k̂wc = arg min
k

Jw(k) (Explorative EGO)

I The solution gives good results on average:
µ(k) = EU [J(k,U)] and k̂µ = arg min

k
µ(k) (Iterative EGO)

I The estimate gives steady results:
σ2(k) = VarU [J(k,U)] and k̂σ2 = arg min

k
σ2(k) (PCE gradient)

I Compromise between Mean and Variance → multiobjective optimization problem:
Pareto front of (µ(k), σ2(k)) (Layered kriging)

I Probability of being below threshold T ∈ R : Reliability analysis
RT (k) = P [J(k,U) ≤ T ] , k̂RT = arg max RT (k) (GP simulations)

I Distribution of minimizers: Tmin = T (U) = mink J(k,U)

Rmin(k) = P [J(k,U) ≤ Tmin] = P

[
k = arg min

k̃
J(k̃,U)

]
(Estimation and maximization of density)

I Relaxation of the constraint: we define Tα(U) = αmink J(k,U), for α ≥ 1, and Rα = RTα

2D Illustration
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General methods
I Design of Experiment

I Efficient exploration of the input space: LHS, space filling designs
I Statistical/Probabilistic aspects

I Bayesian/Frequentist approach: Markov-chain based methods, study of the posterior distribution
I Choice of prior on K to take into account specific information on spatial variation of the friction
I Marginalization with respect to U

I Surrogate modelling
I Kriging (Gaussian Process Regression)
I Polynomial Chaos Expansion

I Optimization
I Adjoint method provides the gradient of the cost function → Adapt principles of gradient descent on specific
objectives

I Adaptative sampling: based on surrogate, choose the next point to be evaluated based on a specific criterion:
EGO, IAGO and more general Stepwise Uncertainty Reduction strategies

Numerical Results: toy model of Shallow Waters
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Conclusion and perspectives
I Several objectives can be defined, often concurrent
I Choice of criterion of robustness is application-dependent
I Scalability of methods in high dimension ? Need to perform Dimension reduction on K and U
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