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MATHEMATIQUES APPLIQUEES - INFORMATIQUE

How can one calibrate a numerical model so that it performs reasonably well for different random operating conditions 7
Objectives

» Define suitable definitions of robustness in the field of computer code calibration
» Develop efficient techniques and algorithms in order to estimate those parameters

» Deal with the high-dimension of the parameter spaces: Dimension reduction

Background: estimation of the bottom friction in a shallow water model General methods

» Design of Experiment
» Efficient exploration of the input space: LHS, space filling designs

» Statistical /Probabilistic aspects
» Bayesian/Frequentist approach: Markov-chain based methods, study of the posterior distribution
» Choice of prior on K to take into account specific information on spatial variation of the friction
» Marginalization with respect to U

» Surrogate modelling
» Kriging (Gaussian Process Regression)

The calibration problem is to be able to find a value of k € K denoted k that matches the best the observations Yobs -
We define a loss function, that is the misfit between the observations to the model.

1 , » Polynomial Chaos Expansion
J(k) = §HM(k) - yobng—l > Optimization
and we have to perform the following minimisation problem, usually with the help of the adjoint method » Adjoint method provides the gradient of the cost function — Adapt principles of gradient descent on specific
k = arg min J(k) ObJeCtIV?S | _ e
kK » Adaptative sampling: based on surrogate, choose the next point to be evaluated based on a specific criterion:

EGO, IAGO and more general Stepwise Uncertainty Reduction strategies

Stochastic Inverse Problem

Numerical Results: toy model of Shallow Waters

Now, u € U ~ U of density py and y.1,« = M(Kyof, Upef)
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» What criteria to use to “optimize” in a sense J ? —— //"‘
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» Evaluating J is time consuming. How to deal with a limited budget of evaluations ? B9
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Which criterion to choose ? SS of the residual

» Global minimum 200 -
(k*, u™) = argmin J(k,u) and IA‘global = k* 175 -
(k,u)
» Assuming that the environmental variables have little influence: L8l
Jg(k) = J(k,E[U]) and kg = argkmin Je(k) (Classical methods) N
—— Those approaches are not robust: inherent variability of U not taken into account o
» Consider the worst-case scenario 75 1
St kIESmadliko ) B Nand ki = arg min Jw(k) (Explorative EGO) .
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» The solution gives good results on average: O |
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u(k) =Ey[J(k, U)] and K, = argmin u(k) (Iterative EGO) NoUn MMPE minE CLUSO CLUS1 JMPE BEST Mean
k
» The estimate gives steady results: Estimates generated using u,.s =E[U]| 4+ (—0.2, —0.1) (Am_Pm)
o%(k) = Vary[J(k, U)] and IA(O_Q — arg min o2(k) (PCE gradient) — == Ker
k 1.4 1 —— NoUn (E[V))
» Compromise between Mean and Variance — multiobjective optimization problem: . - ::'&"EPE
Pareto front of (u(k), o%(k)) (Layered kriging) - — gtﬂgg
» Probability of being below threshold T € R : Reliability analysis —— JMPE
. 0.8 - —— BEST
Rr(k) =P[J(k,U) < T], kg, = argmax Rr(k) (GP simulations) . —— Mean
» Distribution of minimizers: Tpyin = T(U) = ming J(k, U) |
7 T 0.4 -
Rmin(k) = P[J(k, U) < Thinl =P | k = argmin J(k, U) (Estimation and maximization of density) .
! k i .
> Relaxation of the constraint: we define To(U) = aming J(k, U), for o > 1, and Ry = RT, 0.0 -
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. b Conclusion and perspectives
» Several objectives can be defined, often concurrent
0.00 == T ’ T J — » Choice of criterion of robustness is application-dependent

» Scalability of methods in high dimension ? Need to perform Dimension reduction on /C and U/
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