Parameter control in the presence of uncertainties Victor Trappler victor.trappler@univ-grenoble-alpes.fr Élise Arnaud, Laurent Debreu, Arthur Vidard AIRSEA Research team (Inria) – Laboratoire Jean Kuntzmann

WORKSHOP ON SENSITIVITY ANALYSIS AND DATA ASSIMILATION IN METEOROLOGY AND OCEANOGRAPHY, AVEIRO, PORTUGAL 2018

How can one calibrate a numerical model so that it performs reasonably well for different random operating conditions ? Objectives

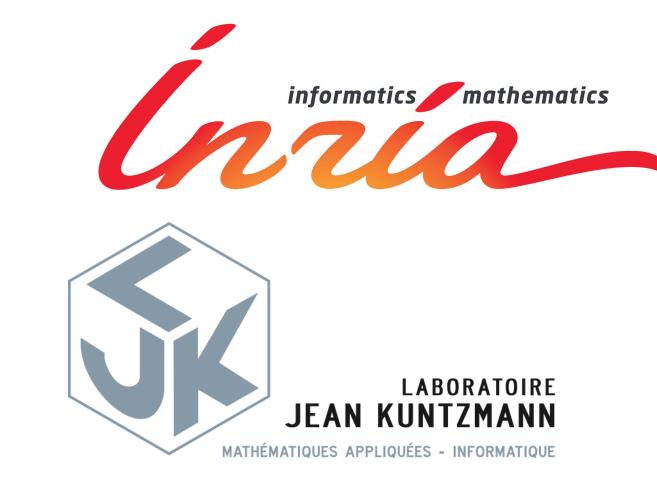
- Define suitable definitions of robustness in the field of computer code calibration
- Develop efficient techniques and algorithms in order to estimate those parameters
- ► Deal with the high-dimension of the parameter spaces: Dimension reduction

Background: estimation of the bottom friction in a shallow water model

The second secon

General methods

- Design of Experiment
 - Efficient exploration of the input space: LHS, space filling designs
- Statistical/Probabilistic aspects
 - Bayesian/Frequentist approach: Markov-chain based methods, study of the posterior distribution
- Choice of prior on K to take into account specific information on spatial variation of the friction
 Marginalization with respect to U



The calibration problem is to be able to find a value of $\mathbf{k} \in \mathcal{K}$ denoted $\hat{\mathbf{k}}$ that matches the best the observations \mathbf{y}_{obs} . We define a loss function, that is the misfit between the observations to the model.

$$J(\boldsymbol{k}) = rac{1}{2} \|M(\boldsymbol{k}) - \boldsymbol{y}_{ ext{obs}}\|_{\boldsymbol{\Sigma}^{-1}}^2$$

and we have to perform the following minimisation problem, usually with the help of the adjoint method

 $\hat{m{k}} = rgmin J(m{k}) \ m{k} \in \mathcal{K}$

Stochastic Inverse Problem

Now, $\boldsymbol{u} \in \mathcal{U} \sim \boldsymbol{U}$ of density p_{U} and $\boldsymbol{y}_{obs} = M(\boldsymbol{k}_{ref}, \boldsymbol{u}_{ref})$ Environmental variables $\boldsymbol{U} \in \mathcal{U} \text{ random}$ Control variable $\boldsymbol{k} \in \mathcal{K}$ Inverse Problem

The loss function is now

$$\underbrace{J(\boldsymbol{k},\boldsymbol{U}) = \frac{1}{2} \|M(\boldsymbol{k},\boldsymbol{U}) - \boldsymbol{y}_{\text{obs}}\|_{\Sigma^{-1}}^{2}}_{\text{Random variable}}$$

- What criteria to use to "optimize" in a sense J?
- Evaluating J is time consuming. How to deal with a limited budget of evaluations ?

Which criterion to choose ?

- Global minimum

- Surrogate modelling
- Kriging (Gaussian Process Regression)
- Polynomial Chaos Expansion
- Optimization
- Adjoint method provides the gradient of the cost function \rightarrow Adapt principles of gradient descent on specific objectives
- Adaptative sampling: based on surrogate, choose the next point to be evaluated based on a specific criterion: EGO, IAGO and more general Stepwise Uncertainty Reduction strategies

Numerical Results: toy model of Shallow Waters

$$(m{k}^*,m{u}^*) = rgmin J(m{k},m{u})$$
 and $m{k}_{
m global} = m{k}^*$
 $(m{k},m{u})$

Assuming that the environmental variables have little influence:

$$J_{\mathbb{E}}(\boldsymbol{k}) = J(\boldsymbol{k}, \mathbb{E}[\boldsymbol{U}]) \quad \text{and} \quad \hat{\boldsymbol{k}}_{\mathbb{E}} = \arg\min J_{\mathbb{E}}(\boldsymbol{k}) \qquad (\text{Classical methods})$$

 \longrightarrow Those approaches are not robust: inherent variability of $oldsymbol{U}$ not taken into account

Consider the worst-case scenario

$$M_{W}(\boldsymbol{k}) = \max_{\boldsymbol{u} \in \mathcal{U}} J(\boldsymbol{k}, \boldsymbol{u}) \text{ and } \hat{\boldsymbol{k}}_{WC} = \arg\min_{\boldsymbol{k}} J_{W}(\boldsymbol{k})$$
 (Explorative EGO)

► The solution gives good results on average:

$$\mu(\boldsymbol{k}) = \mathbb{E}_{U}[J(\boldsymbol{k}, \boldsymbol{U})] \quad \text{and} \quad \hat{\boldsymbol{k}}_{\mu} = \arg\min \mu(\boldsymbol{k}) \qquad (\text{Iterative EGO})$$

► The estimate gives steady results:

$$\sigma^{2}(\boldsymbol{k}) = \operatorname{Var}_{U}[J(\boldsymbol{k}, \boldsymbol{U})] \quad \text{and} \quad \hat{\boldsymbol{k}}_{\sigma^{2}} = \arg\min\sigma^{2}(\boldsymbol{k}) \qquad (\mathsf{PCE gradient})$$

• Compromise between Mean and Variance \rightarrow multiobjective optimization problem: Pareto front of $(\mu(\mathbf{k}), \sigma^2(\mathbf{k}))$

• Probability of being below threshold $T \in \mathbb{R}$: Reliability analysis

$$R_{T}(\boldsymbol{k}) = \mathbb{P}\left[J(\boldsymbol{k}, \boldsymbol{U}) \leq T\right], \quad \hat{\boldsymbol{k}}_{R_{T}} = \arg\max R_{T}(\boldsymbol{k}) \qquad (\text{GP simulations})$$

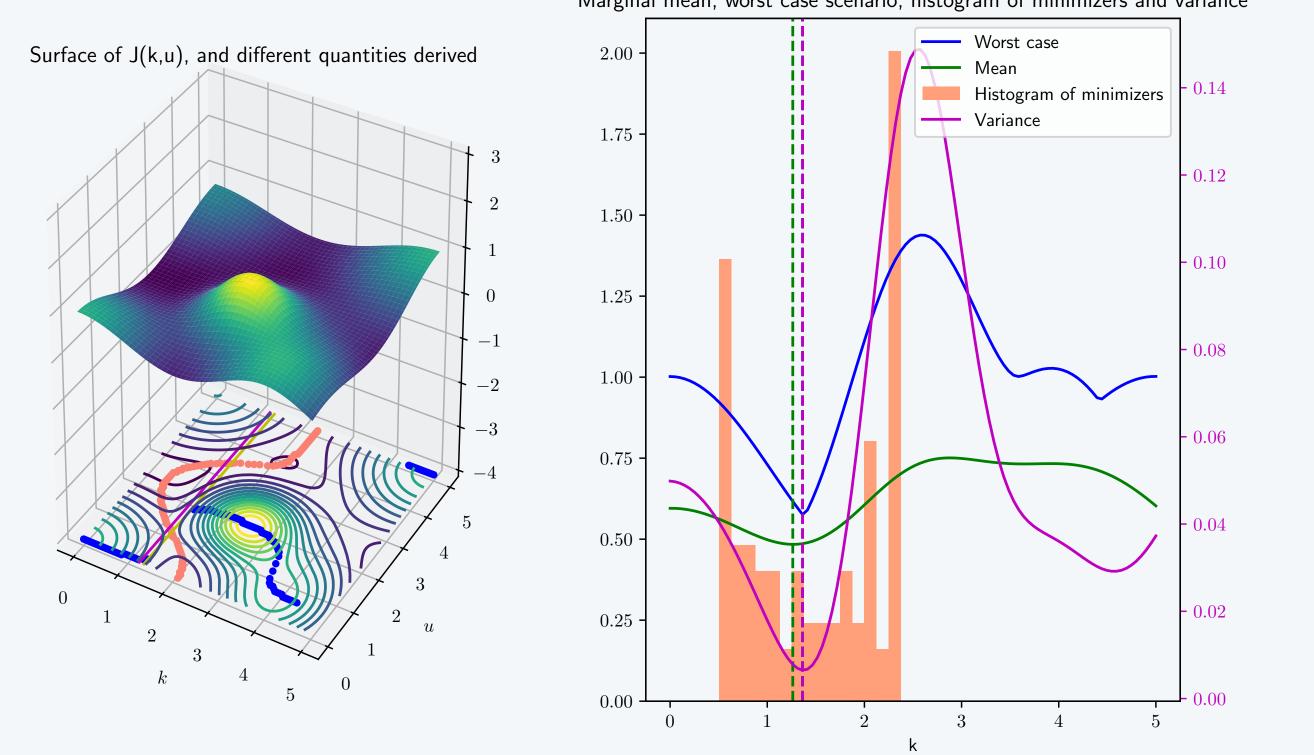
• Distribution of minimizers: $T_{\min} = T(U) = \min_{k} J(k, U)$

$$R_{\min}(\boldsymbol{k}) = \mathbb{P}\left[J(\boldsymbol{k}, \boldsymbol{U}) \leq T_{\min}\right] = \mathbb{P}\left[\boldsymbol{k} = \arg\min J(\tilde{\boldsymbol{k}}, \boldsymbol{U})\right]$$
(Estimation and maximization of density)

► Relaxation of the constraint: we define $T_{\alpha}(U) = \alpha \min_{k} J(k, U)$, for $\alpha \ge 1$, and $R_{\alpha} = R_{T_{\alpha}}$

2D Illustration

Marginal mean, worst case scenario, histogram of minimizers and variance



Conclusion and perspectives

- Several objectives can be defined, often concurrent
- Choice of criterion of robustness is application-dependent
- Scalability of methods in high dimension ? Need to perform Dimension reduction on \mathcal{K} and \mathcal{U}

References

Maria J. Bayarri, James O. Berger, Rui Paulo, Jerry Sacks, John A. Cafeo, James Cavendish, Chin-Hsu Lin, and Jian Tu. Inverse Problem

A framework for validation of computer models. *Technometrics*, 49(2):138–154, 2007.

Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, Pa, 2005.

OCLC: 265659758.

Jeffrey S. Lehman, Thomas J. Santner, and William I. Notz.
 Designing computer experiments to determine robust control variables.
 Statistica Sinica, pages 571–590, 2004.

Abraham Wald.

Statistical Decision Functions Which Minimize the Maximum Risk. Annals of Mathematics, 46(2):265–280, 1945.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.