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The South Atlantic Ocean

South Atlantic hosts complex
water mass exchanges, review:
[Garzoli and Matano, 2011]

Warm waters enter from the
Indian Ocean, cold waters from
the Pacific

Mixing and air-sea interactions
transform these to surface
waters which travel Northward
as part of the Atlantic
Meridional Overturning
Circulation (AMOC) Figure: from [Schiermeier, 2013]
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Variability in the SAMOC

South Atlantic MOC Basin-wide
Array (SAMBA) initiated to
study impact on broader AMOC
[Ansorge et al., 2014]

What generates variability
observed by SAMBA?

Goal

Attribute seasonal to interannual
variability in the SAMOC to its

geographical origins as atmospheric
perturbations. Figure: from [Schiermeier, 2013]
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The Atlantic Meridional Overturning Circulation

Overturning streamfunction at
latitude y :

ψMOC (y , z , t) = −
∫ z

−H

∫ xE

xW

v dx dz

AMOC is computed where ψMOC is
maximized

AMOC (y , t) = max
z∈(−H,0)

ψMOC (y , z , t)

A metric for global ocean circulation

Figure: Monthly mean ψMOC at 34◦S
from ECCOv4r2 over 1992-2011.
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Estimating the Circulation and Climate of the Ocean (ECCO)

Forward model:

MITgcm: hydrostatic, Boussinesq
equations from 1992-2011

Finite volume discretization

∼ 1◦ × 1◦ horizontal resolution, 50
vertical layers

Inversion framework:

Deterministic, nonlinear optimization
(4D-Var) [Forget et al., 2015]

Solve for uncertain

I BCs: ERA Interim [Dee et al., 2011]

I ICs: (u, v, θ,S)0
I Parameters: κGM , κRedi , κz

Adjoint based gradients computed via
AD tool TAF [Giering et al., 2005]

(a) June 28, 2018 Argo coverage
argo.ucsd.edu/About_Argo.html

(b) from nodc.noaa.gov/woce

Data include Argo, WOCE,
GRACE, SSTs
[Reynolds et al., 2002], etc.
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Attribution of SAMOC variability

Define Jm := mth monthly mean SAMOC at 34◦S in final year of
1992-2011

Consider linearized setting

Jm = J0︸︷︷︸
20 year mean

+

〈(
∂Jm

∂F

)T

, δF

〉
︸ ︷︷ ︸

δJm

Two ingredients:
I δF := atmospheric forcing from ERA Interim with ECCOv4r2

adjustments [Dee et al., 2011, Forget et al., 2015]

I ∂Jm

∂F
:= sensitivity of SAMOC to atmospheric forcing, computed from

ECCOv4r2 inverse modeling framework [Forget et al., 2015]
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Reconstruction of SAMOC variability from a single point
How do zonal wind anomalies at one point during 1992 influence the
January, 1993 SAMOC?

δJRec(t = Jan, 1993) =

∫ t

t−1 yr

∂Jm=1

∂τx
(x , y , s − t) δτx(x , y , s) ds

... not much, ∼ O(10−5) Sv
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Reconstruction of the SAMOC

δJRec(t) =
∑
k

δJk(t)

=
∑
k

∫ t

t−τmem

∫
x

∫
y

∂Jm

∂Fk
(x , y , s − t) δFk(x , y , s) dx dy ds

k indexes {wind stress, long/short wave radiation, air temperature,
humidity, precipitation, continental runoff}

τmem is the lead time, or SAMOC memory, max 19 years
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Reconstruction of the SAMOC

Figure: SAMOC at 34◦S diagnosed from ECCOv4r2 (black) and various
reconstructions. Lead time is 19 years.
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Reconstruction of seasonal variability

Figure: Reconstructed SAMOC seasonal variability compared to ECCOv4r2 output
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Zonal wind seasonal cycle
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Attribution of the seasonal cycle
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Attribution of interannual variability to zonal wind stress
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Variability attributed to ENSO
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Conclusions

Monthly AMOC variability well explained by linearized dynamics
propagating atmospheric perturbations to 34◦S

Zonal wind stress, particularly from local forcing through Ekman
dynamics, dominates the seasonal cycle

Interannual variability shows complex dependence on remote forcing

The imprint of El Niño & La Niña is visible on the SAMOC, which
can balance the impact of local forcing

This relationship is shown through the model adjoint
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Reconstruction of interannual variability

Figure: Reconstructed SAMOC interannual variability compared to ECCOv4r2
output
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Comparison to Argo inferred SAMOC

Figure: Comparison of SAMOC at 34◦S (green) diagnosed from ECCOv4r2 and
(orange) inferred from Argo profiles and Scatterometer Climatology of Ocean
Winds (SCOW), from [Dong et al., 2014]
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Attribution of interannual variability to heat flux

Interannual reconstructions to
air temperature, long & short
wave radiation, and humidity
diverge as τmem >∼ 5years

Due to unphysically large
sensitivities in N. Atl. Subpolar
gyre & Weddell sea

Results from parameterization of
deep convection and brine
rejection

Further work to prove whether
this is due to inexact adjoint
formulation or nonlinearities

Figure: Reconstruction of interannual
SAMOC variability due to shortwave
radiation, shown as an example.
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