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INTRODUCTION

* Spire Global currently has a constellation of nanosatellites collecting radio
occultation measurements, and maritime and aviation information.

* Spire Global processes the radio occultation observations and currently the
number of delivered profiles is similar with the number of profiles delivered
by KOMPSAT-5.

* Spire Global has its own NWP model and data assimilation system based
on EnkF/hybrid 4D-EnVar using GSI platform.

* Spire Global investigates possibilities to implement an adjoint model in the
future. A spire



OPTIMIZATION ON THE REDUCED SPACES - 4D-VAR

* J(xo) = %(xg —x0) Byt (xg — xo)+ % im0V — Hi(x)) Ry (i — Hi(x))
Xiv1 = Mii4q(x),i =0,..,N—1
* The first order necessary optimality conditions
Full order forward model:
Xiz1 = M;i4q(x),i=0,..,N—1
Full order adjoint model:
Ay = HERJTll()’N = H(XN)),
Ai=Miy; A+ HIR7 (y; —H(x)),i=N—1,...,0
Full order gradient of the cost function:

Vi = — Bo (x5~ x0)- A9 =0 Aspire



OPTIMIZATION ON THE REDUCED SPACES - 4D-VAR

« JROM(%,) = ~ (xf — UR,) Byl (xf — UZy)+
~ SN o — Hy(UE))T R (v; — H; (Uy))
Biv1 = M4 (%), M1 (%) = UTM; ;. (U%),i=0,..,N—1
* The first order necessary optimality conditions
Reduced order forward model:
Zivr = M1 (%), My (B) = UMy, (UX),i=0,..,N -1
Reduced order adjoint model:
Ay = UTHRRy' ()’N = H((Ufzv))),
Ai=UTM; Ay +UTH{ R (y; —HU%)),i=N—1,..,0
Reduced order gradient of the cost function:
Vi JROM = —UTBg 1 (x{-U%y) — UAp= 0 A spire



OPTIMIZATION ON THE REDUCED SPACES - 4D-VAR

es —Grad ARRA
* ARRA uses forward, adjoint 10° o Gad AR — T ——Cost func - ARRA—10°
and gradient information % - Grad full -©-Cost func - AR

- Cost func — full

to construct basis U
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http://people.cs.vt.edu/~rstefane/Papers/POD_DEIM_4DVar_Stefanescu.pdf

OPTIMIZATION ON THE REDUCED SPACES - 4D-VAR

 The full order KKT equations F({%) = 0,{% = (x%,1%)
e The reduced-order problem solution projected to the full space {* = (2¢,19)

» Assuming that (¢ is located in a neighborhood of (¢ we have

F({%) = F({%) - F((Y) = F'({*) ((*-{%)

2= go|| < |IF'@H~H| - 1|F ()]l
* Residual
[((UU" = DM 11 (R )izo,..n-1
F(¢) = (WU - DAGRF (yv — H(@D))
(UUT = DM}, 1; Ay HHI R (yi —HED)i =N~ 1,...,0
(UUT = DBy (xg — X§)

A spire



MLEF and hybrid 3DEnVar
J(xp) = g(x(l)’ — %x0) " Bg " (x5 — x0) + %(xg " xo)TPf_l(xg —x) +
+- (7 — HE)TR™ (¥ — H(x))

Vi = — BBy (xg - x0) (1 -P)Ps 1(x0 _xo) _6_1; R~ (y —H(x))

MLEF - ensemble data assimilation algorithm based on control theory.

MLEF formulates the cost function without the climatological term: g = 0.

MLEF has a non-differentiable global and local formulations.

MLEF formulates the optimization problem in the ensemble space using Hessian
preconditioning

1
o o G B G S PZ[I + Z(xg)TZ(xg)]
1

Z(x) = [z1(x),z(x), ..., Zye (X)], zi (x) = R_E[H(x + Plf) — H(x)] Aspire



MLEF and hybrid 3DEnVar
o JMIEF(Q) = 2T+ Z(xg) Z(x8)]) ¢+
+5 @ = H(xb + G20 R (y — H(xf + GY%0))
* Gradient:
Ve MLEF Q) = [+ Z(x§) Z(x)] 7Y -
[I + Z(xg)TZ(xg)]‘T/zZ(xg + G1/2¢ )T R™Y? (y —H (xg + G%{))

 The initial formulation considers only ensemble of forward perturbations included
1

inside PfE.
« Solving the optimization problem in the reduced-space is computationally

efficient. Errors because of reduced-rank P and solving in a small space.

* When projected back into the full space, is the projected solution equivalent with
the full-rank solution (in the case of smooth operators)? Aspire



Numerical Experiments

1D Burgers model using a single state variable.
* Created a true state based on a polynomial of order 7t".

» Generated synthetic observations and ensemble of background states assuming
Gaussian errors distributions.

* Ensemble based covariance matrix is full.
* Initial setting considers observations available for every state variable.

» Single data assimilation cycle. A spire



Numerical Experiments

* Number of spatial discrete points equal with the number of variables — 2001.

 Disentangle between the errors caused by a reduced rank ensemble based
covariance matrix and solving the optimization problem on a reduced space.

* To reduce the projection errors, we also add gradient information among the
columns of ensemble covariance matrix.
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Numerical Experiments
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Numerical Experiments

Cost Function 3DEnVar Gradient of the cost function
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Numerical Experiments

METHOD Final Cost — Xeruel No_Ens CPU time
No_state FR —full

3DENVAR FR 15.2513 2.6700e-07  10.1334 25.25 rank Py
3DENVAR RR(6) 528 0.0588 3.8360e-07  10.2985 0.3% 25.45 RR(nF) -
reduced
MLEF FR 3 15.3337 8.12e-13 10.1328 1 5.18s
rank Pf
MLEF RR(2F) 3 11707.54 6.76e-14 15.5889 0.1% 0.21s with n
forward ens
MLEF RR(1F+1A) 3 0.9999 2.98e-13 10.2981 0.1% 0.21s
RR(nF+nA)
MLEF RR(4F) 3 12055.18 1.32e-13 14.2791 0.2% 0.22s e
MLEF RR(2F+2A) 3 0.4999 1.75e-12 10.2981 0.2% 0.22s ksl
with n ens
3 6138.131 4.6e-1 10.6594 0.3% 0.23 S onfane
MLEF RR(6F) . 6e-14 . 3% 23s Fory i)
. ens of
MLEF RR(3F+3A) 3 0.333329 1.04e-12 10.2982 0.3% 0.23s Sionts

A spire



Conclusions and Future Plans

* Solving the optimization problem in a reduced space is computationally
efficient - MLEF is faster than hybrid 3DEnVAr.

« MLEF solution has errors due to the reduced rank covariance matrix and
projection errors.

* Projection errors can be significantly diminished if ensemble of gradients
are included in the covariance matrix.

* What is the ratio between the reduced-rank error and projection error in a
NWP system?

 Future experiments will include a cycling system, observations only for a
subset of the state variables and increased number of forward ensembles
where ensemble based methods are known to work well.

* Is this technique applicable to surrogate based methods such as hybrid
4DEnVar? Is it possible to reduce the residuals errors caused by using a
linear combination of forward ensembles to model the increments? Aspire



For any questions, please contact:

Razvan Stefanescu

razvan.stefanescu@spire.com
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