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• Spire Global currently has a constellation of nanosatellites collecting radio 

occultation measurements, and maritime and aviation information.

• Spire Global processes the radio occultation observations and currently the 

number of delivered profiles is similar with the number of profiles delivered 

by KOMPSAT-5.

• Spire Global has its own NWP model and data assimilation system based 

on EnkF/hybrid 4D-EnVar using GSI platform.

• Spire Global investigates possibilities to implement an adjoint model in the 

future. 
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Reduced order forward model: 
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OPTIMIZATION ON THE REDUCED SPACES – 4D-VAR

•R. Stefanescu, A. Sandu, I.M. Navon POD/DEIM Reduced-Order Strategies for Efficient Four
Dimensional Variational Data Assimilation , Journal of Computational Physics, Volume 295, pages
569-595.

• ARRA uses forward, adjoint 
and gradient information 
to construct basis U

• AR uses forward information 
to construct basis U

http://people.cs.vt.edu/~rstefane/Papers/POD_DEIM_4DVar_Stefanescu.pdf


• The full order KKT equations 𝐹 𝜁𝑎 = 0, 𝜁𝑎 = (𝑥𝑎 , 𝜆𝑎)                            

• The reduced-order problem solution projected to the full space መ𝜁𝑎 = (ො𝑥𝑎 , መ𝜆𝑎)                                                                

• Assuming that መ𝜁𝑎 is located in a neighborhood of 𝜁𝑎 we have 
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• MLEF - ensemble data assimilation algorithm based on control theory.

• MLEF formulates the cost function without the climatological term: 𝛽 = 0.

• MLEF has a non-differentiable global and local formulations.

• MLEF formulates the optimization problem in the ensemble space using Hessian 

preconditioning
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• Solving the optimization problem in the reduced-space is computationally 

efficient. Errors because of reduced-rank 𝑃𝑓 and solving in a small space. 

• When projected back into the full space, is the projected solution equivalent with 

the full-rank solution (in the case of smooth operators)? 

MLEF and hybrid 3DEnVar



• 1D Burgers model using a single state variable.

• Created a true state based on a polynomial of order 7th.

• Generated synthetic observations and ensemble of background states assuming 

Gaussian errors distributions.

• Ensemble based covariance matrix is full.

• Initial setting considers observations available for every state variable.

• Single data assimilation cycle.

Numerical Experiments



• Number of spatial discrete points equal with the number of variables – 2001.

• Disentangle between the errors caused by a reduced rank ensemble based 

covariance matrix and solving the optimization problem on a reduced space.

• To reduce the projection errors, we also add gradient information among the 

columns of ensemble covariance matrix.

Numerical Experiments



Numerical Experiments

True State Ratio between standard dev of obs and 
backround

𝑂 − 𝐵 > 5𝜎0 − 8.1%



Numerical Experiments

Cost Function Gradient of the cost function3DEnVar



RR(nF) – reduced rank 𝑃𝑓 with n forward ens

RR(nF) – reduced rank 𝑃𝑓 with n forward ens

Numerical Experiments
METHOD No Iter Final Cost Final Grad |𝒙𝒂 − 𝒙𝒕𝒓𝒖𝒆| 𝑵𝒐_𝑬𝒏𝒔

𝑵𝒐_𝒔𝒕𝒂𝒕𝒆

CPU time

3DENVAR FR 520 15.2513 2.6700e-07 10.1334 1 25.2s

3DENVAR RR(6) 528 0.0588 3.8360e-07 10.2985 0.3% 25.4s

MLEF FR 3 15.3337 8.12e-13 10.1328 1 5.18s

MLEF RR(2F) 3 11707.54 6.76e-14 15.5889 0.1% 0.21s

MLEF RR(1F+1A) 3 0.9999 2.98e-13 10.2981 0.1% 0.21s

MLEF RR(4F) 3 12055.18 1.32e-13 14.2791 0.2% 0.22s

MLEF RR(2F+2A) 3 0.4999 1.75e-12 10.2981 0.2% 0.22s

MLEF RR(6F) 3 6138.131 4.6e-14 10.6594 0.3% 0.23s

MLEF RR(3F+3A) 3 0.333329 1.04e-12 10.2982 0.3% 0.23s

FR – full 

rank 𝑃𝑓

RR(nF) –
reduced 

rank 𝑃𝑓
with n 
forward ens

RR(nF+nA) 
– reduced 

rank 𝑃𝑓
with n ens
of forward 
states and n 
ens of 
gradients 



• Solving the optimization problem in a reduced space is computationally 

efficient - MLEF is faster than hybrid 3DEnVAr.

• MLEF solution has errors due to the reduced rank covariance matrix and 

projection errors.

• Projection errors can be significantly diminished if ensemble of gradients 

are included in the covariance matrix. 

• What is the ratio between the reduced-rank error and projection error in a 

NWP system?

• Future experiments will include a cycling system, observations only for a 

subset of the state variables and increased number of forward ensembles 

where ensemble based methods are known to work well.

• Is this technique applicable to surrogate based methods such as hybrid 

4DEnVar? Is it possible to reduce the residuals errors caused by using a 

linear combination of forward ensembles to model the increments?

Conclusions and Future Plans



For any questions, please contact:

Razvan Ştefănescu

razvan.stefanescu@spire.com


