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Weakly-constrained 4D-Var
A large-scale weighted nonlinear least-squares problem

min
x∈Rn

J(x) =
1
2
‖x0 − xb‖2B−1 +

1
2

Nsw∑
j=0

∥∥Hj

(
xj
)
− yj

∥∥2
R−1
j

+
1
2

Nsw∑
j=1

‖xj −Mj(xj−1)‖2Q−1
j

where

x = (x0, x1, . . . , xNsw )T ∈ Rn is the control variable (with xj = x(tj)),

xb is the background given at the initial time (t0),

yj ∈ Rmj is the observation vector over a given time interval,

Hj maps the state vector xj from model space to observation space,

Mj represents an integration of the numerical model from time tj−1 to tj ,

B, Rj and Qj are the covariances of the background, observation and model error.

B Model error, longer time windows, accumulation of more observations, but larger
problems.

Minimization: truncated Gauss-Newton method
LinearizingM and H at the current iterate.

Minimizing the resulting quadratic function.
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The linearized subproblems
Outer iteration k

min
δx∈Rn

qst(δx) =
1
2
‖Lδx− b‖2D−1 +

1
2
‖Hδx− d‖2R−1

where

L =



In
−M(k)

1 In
−M(k)

2 In
. . .

. . .
−M(k)

Nsw
In

 ,

B Parallel-in-time matrix-vector products.

d =


y0 −H0(x

(k)
0 )

y1 −H1(x
(k)
1 )

...
yNsw −HNsw (x

(k)
Nsw

)

 , b =


x
(k)
0 − xb

M1(x
(k)
0 )− x

(k)
1

...
MNsw (x

(k)
Nsw−1)− x

(k)
Nsw

 ,

H = diag(H(k)
0 ,H(k)

1 , . . . ,H(k)
Nsw

),

D = diag(B,Q1, . . . ,QNsw ) and R = diag(R0,R1, . . . ,RNsw ).
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Saddle Point Approach

Reformulation of the problem
Let us consider weak-constraint 4D-Var as a constrained problem:

min
(δp,δw,δx)

1
2
‖δp− b‖2D−1 +

1
2
‖δw − d‖2R−1

subject to δp = Lδx and δw = Hδx

The Lagrangian function for this problem reads

L(δw, δp, δx,λ,µ) =
1
2
‖δp− b‖2D−1 +

1
2
‖δw − d‖2R−1

+ λT (δp− Lδx) + µT (δw −Hδx)

The stationnary point of L satisfies the following equations:

D−1(Lδx− b) + λ = 0

R−1(Hδx− d) + µ = 0

LTλ + HTµ = 0
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Saddle Point Approach

In matrix form: D 0 L
0 R H
LT HT 0

λ
µ
δx

 =

b
d
0


The solution of this problem is a saddle point, with no inverse of covariance matrix
involved.

B Solution algorithm: iterative methods (MINRES, GMRES, ...) with a
preconditioner.
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The original saddle method: M. Fisher

Consider the solution of r(δλ, δµ, δx) =

D 0 L
0 R H
LT HT 0

δλδµ
δx

−
b

d
0

 = 0

Saddle-original (SAQ0)
While not converged:

1 Compute J(xk) and gk = ∇xJ(xk)

2 Apply the preconditioned GMRES algorithm to solve the system r(δλ, δµ, δx) = 0.
Terminate the iterations if ‖r(δλ, δµ, δx)‖ ≤ εr (‖b‖+ ‖d‖) or j = ninner to yield
δxk

3 Set xk+1 = xk + δxk

Possible preconditioners

PM =

D 0 ~L
0 R 0

~LT 0 0

, PB =

D 0 0
0 R 0
0 0 S

 , PT =

D 0 ~L
0 R H
0 0 S


with S−1 = ~L−1D~L−T and ~L ∼ L (square, nonsingular),
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Numerical experiments
A Burgers system

We consider the one dimensional dynamical system

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2 = f (x)

(x , t) ∈]0, 1[×R∗+
u(0, t) = u(1, t) = 0, t > 0
u(x , 0) = k sin(πx) sin(π(1− x));

x ∈]0, 1[

The field u is partially observed in space and time.

Reference trajectory and observations at the end of the first and last subwindow (NSW = 50).
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The original saddle method

Continuous lines: nonlinear cost function J; dashed lines: GN approximation qst .

One outer iteration: fully accurate (εr = 10−12).
Nonlinear problem: the values of J and qst do not agree for large steps δx.

No convergence in one outer iteration (optimal value ∼ 63.11).

Non-monotonic evolutions of qst and J (obvious with the preconditioner PM).
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The original saddle method

Continuous lines: nonlinear cost function J; dashed lines: GN approximation qst .

10 outer iterations: 50 inner iterations (εr = 10−7).
Good fit between qst and J beyond the first iteration for moderately small steps.

No significant reduction in J (optimal value ∼ 63.11).

Non-monotonic evolutions of qst and J.

B Stoppping cannot solely rely on maximum number of iterations.
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A safeguarded saddle algorithm

Safeguarded Saddle (SAQ`)
While not converged:

1 Compute J(xk) and gk = ∇xJ(xk)

2 Apply the preconditioned GMRES algorithm to solve the system r(δλ, δµ, δx) = 0.
At iteration j , terminate if

mod (j , `) = 0 and qst(0)− qst(δx) ≥ max
[
εq min[1, ‖gk‖2], θj

]
or if the residual equation is solved to full accuracy, yielding a step δxk .

3 Perform a backtracking linesearch on J along δxk yielding a step-length αk .

4 Set xk+1 = xk + αkδxk .

with ` ∈ N the model check frequency and {θj} a sequence that goes to zero.
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A safeguarded saddle algorithm

Global convergence
The stopping criterion and the strict convexity of qst ensure that δxk is
"gradient-related":

−gT
k δxk ≥ κ1‖gk‖2 and ‖δxk‖ ≤ κ2‖gk‖

for some positive constants 0 < κ1 ≤ κ2.

Applying the linesearch to "gradient-related" directions is sufficient to ensure a
monotonic decrease of the sequence {J(xk)}.

Remarks
The sequence {θj} goes to zero and forces GMRES not to stop prematurely.

The stopping criterion involves the computation of the quadratic.

B Application of the operators L, D−1, H, R−1.

The GMRES algorithm may need more iterations than previsously.

B Potentially more expensive.
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Model check frequency: every ` = 25 inner iteration

Continuous lines: nonlinear cost function J; dashed lines: GN approximation qst .

10 outer iterations (εq = 10−2)
Better decrease of qst , but more inner iterations (2 times).

Preconditioner PM : better decrease in J.

Poor performances of the preconditioners PB and PT .
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Conclusion and perspectives

Problematic behaviour of the original saddle formulation as general method for
solving the weakly-constrained 4DVar problem.

B Poor correlation between quadratic model decrease and reduction of the
residual of the associated optimality conditions.

B The original saddle formulation may produce reasonable results on some
favourable examples (QG problem, not shown).

A safeguarded approach focusing on quadratic reduction has been suggested.

B Stopping criterion based on periodical evaluations of the quadratic function
and use of a linesearch.

B Decrease in the cost function values at each outer iteration despite possible
chaotic behaviour in the inner iterations.

B Increase in the computational costs (more inner iterations, operator D−1 in
the quadratic function).

Avoiding the use of D−1?

B Approximately solving the linear system (Dx = z).
B Convergence analysis for noisy/inexact computation of D−1

Preconditioners for the saddle formulation.
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Thank you!
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Model check frequency: every ` = 1 inner iteration

Continuous lines: nonlinear cost function J; dashed lines: GN approximation qst .

10 outer iterations (εq = 10−2)
Reduction in J every outer iteration.

Preconditioner PM : oscillations but best decrease.

Poor performances of the preconditioners PB and PT .

Computational costs: more inner iterations, valuation of qst per inner iteration.
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Numerical experiments

A Burgers system
Discretization (first-order upwind scheme and second-order centered scheme):

1
∆t

(un+1
i − un

i ) +
un
i

2∆x
(un

i+1 − un
i−1)− ν

(∆x)2 (un
i+1 − 2un

i + un
i−1) = g(i∆x , n∆t)

with ∆x = 0.01 (n = 100), ∆t = 1.10−5, ν = 0.25, T = 0.03 and Nsw = 50.

True solution: x t
0 = 0.1 sin(2πx), ∀x ∈ [0, 1]
∀j = 1 : Nsw xtj =Mj(x

t
j−1) + εmj , εmj ∼ N (0, σ2

mIn)
with

σ2
m = 1.10−4 T

Nsw
.

Observations: ∀j = 1 : Nsw yj = Hj(x
t
j ) + εoj , εoj ∼ N (0, 1.10−3Imj ),

with mj = 20. Rj diagonal such that κ(Rj) = 103.

Background: xb = x t
0 + εmj , εb ∼ N (0, 1.10−2In)

∀j = 1 : Nsw xj =Mj(xj−1) + εmj , εmj ∼ N (0, σ2
mIn)

B = σ2
b(αIn + (1− α)B̃), with B̃i,j = e−

d(i,j)2

L2 , such that κ(B) = 105.

Model error: Qj similar to B such that κ(Qj) ∼ 1.6103.
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The linearized subproblems

State Formulation

min
δx

1
2
‖Lδx− b‖2D−1 +

1
2
‖Hδx− d‖2R−1

Forcing Formulation

min
δp

1
2
‖δp− b‖2D−1 +

1
2
‖HL−1δp− d‖2R−1

Matrix-vector products with L and H
naturally parallel.

Preconditioning is difficult:

P = D1/2L̃−T(LTD−1L)L̃−1D1/2

can be ill-conditionned depending on
the accuracy of L̃−1.

Change of variables: δp = Lδx

Matrix-vector products with L−1 is a
priori sequential.

Preconditioning is straightforward:
structure is similar to the
strong-constrained case.

Inverse of covariance matrices: expensive operation for new systems (hybrid background
error covariance matrices).

23



Safeguarded Saddle

Convergence
Remember qst(0)− qst(δx) ≥ max

(
εq min

(
1, ‖gk‖2

)
, θj
)

From the termination criterion one gets
εqκ
−2
g ‖gk‖2 ≤ −gT

k δxk − 1
2δx

T
k ∇2qst(xk)δxk

From the positive definiteness of ∇2qst, we deduce −gT
k δxk ≥ εqκ−2

g ‖gk‖2

The strict convexity of qst ensures that ‖δxk‖ ≤ 2
νmin
‖gk‖

We therefore get that −gT
k δxk ≥ κ1‖gk‖2 and ‖δxk‖ ≤ κ2‖gk‖, in other words,

δxk is gradient related

A cosine condition and the convergence of the linesearch naturally follows.
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Some preconditioners for the saddle algorithms

Preconditioners

PM =

D 0 ~L
0 R 0

~LT 0 0

, PB =

D 0 0
0 R 0
0 0 S

 , PT =

D 0 ~L
0 R H
0 0 S


with S−1 = ~L−1D~L−T and ~L ∼ L (square, nonsingular),

Inverse

P−1
M =

 0 0 ~L−1

0 R−1 0
~L−T 0 −S−1

, P−1
B =

D−1 0 0
0 R−1 0
0 0 S−1

 ,

P−1
T =

D−1 0 −D−1~LS−1

0 R−1 −R−1HS−1

0 0 S−1


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