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Weakly-constrained 4D-Var

A large-scale weighted nonlinear least-squares problem
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where
@ x = (X0,X1,...,Xn,, )" €R"is the control variable (with x; = x(t;)),
xp is the background given at the initial time (to),
yj € R™ is the observation vector over a given time interval,
‘H; maps the state vector x; from model space to observation space,
M represents an integration of the numerical model from time tj_; to t;,

B, R; and Q; are the covariances of the background, observation and model error.
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Model error, longer time windows, accumulation of more observations, but larger
problems.

Minimization: truncated Gauss-Newton method

@ Linearizing M and H at the current iterate.

@ Minimizing the resulting quadratic function.




The linearized subproblems
QOuter iteration k
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> Parallel-in-time matrix-vector products.

Yo — Ho(xék)) X(()k) — Xp

= Ha(4") Mi(xg?) =g
o d= . ) b= . ’

Y, = Hi, () M, (4 —3) = Xhe)

® H=diag(H{",HY,... . H{)),
@ D =diag(B,Q4,...,Qn,, ) and R =diag(Ro,R1,...,Ra,, ).




Saddle Point Approach

Reformulation of the problem

@ Let us consider weak-constraint 4D-Var as a constrained problem:
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subject to dp =Ldx and Jw = Hdx
@ The Lagrangian function for this problem reads
£(5w,5,5% A, 1) =315 — bl + 3 6w — s
+ AT(6p — L6x) + " (6w — Hox)
@ The stationnary point of L satisfies the following equations:

D '(Léix—b)+A=0
R '(Hox—d)+ =0
L'A+H p=0




Saddle Point Approach

@ In matrix form:

D 0 L A b
0 R H pwl=1|d
L™ HT o dx 0

@ The solution of this problem is a saddle point, with no inverse of covariance matrix
involved.

fa ‘ ol 4’%‘:@ :
] A+
AR Hy QN X
o1 W
. A\

2%
%

> Solution algorithm: iterative methods (MINRES, GMRES, ...) with a
preconditioner.



The original saddle method: M. Fisher

D 0 L P b
Consider the solution of r(d\,éu,6x)=( 0 R H ou|l —[d] =0
L™ HT 0/ \6x 0

Saddle-original (SAQO)
While not converged:
© Compute J(xx) and gk = ViJ(xk)

@ Apply the preconditioned GMRES algorithm to solve the system r(d\, du, dx) = 0.
Terminate the iterations if ||r(dA, du, x)|| < e-(||b]| + ||d]]) or j = Ninner to yield
OXk

9 Set Xk+1 = Xk + OXk

Possible preconditioners

D 0 L D 0 O
Pp=|10 R 0|, Pe=(0 R 0], Pr
™ o0 o 0 0 S

withS ' =L 'DL Tand L~ L (square, nonsingular),
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© Stopping the saddle method?



Numerical experiments

A Burgers system

@ We consider the one dimensional dynamical system
ou ou ?u
— x Vo= f(x)
(x, t) €]0,1[xR}
u(0,t) =u(l,t)=0, t>0
u(x,0) = ksin(mx)sin(m(1 — x));
x €]0,1]

@ The field u is partially observed in space and time.
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Reference trajectory and observations at the end of the first and last subwindow (Nsy = 50).
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The original saddle method
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Continuous lines: nonlinear cost function J; dashed lines: GN approximation gs:.
One outer iteration: fully accurate (¢, = 107'2).

@ Nonlinear problem: the values of J and gs do not agree for large steps Ox.

@ No convergence in one outer iteration (optimal value ~ 63.11).

@ Non-monotonic evolutions of gs: and J (obvious with the preconditioner Py).




The original saddle method
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Continuous lines: nonlinear cost function J; dashed lines: GN approximation gst.

10 outer iterations: 50 inner iterations (¢, = 1077).

@ Good fit between g+ and J beyond the first iteration for moderately small

@ No significant reduction in J (optimal value ~ 63.11).
@ Non-monotonic evolutions of gs: and J.

> Stoppping cannot solely rely on maximum number of iterations.

SO0

steps.




Outline

© A safeguarded saddle algorithm



A safeguarded saddle algorithm

Safeguarded Saddle (SAQY)
While not converged:
@ Compute J(xx) and gk = Vi J(xk)

@ Apply the preconditioned GMRES algorithm to solve the system r(d\,du, dx) = 0.
At iteration j, terminate if

mod (j,£) =0 and  Gs(0) — gse(6x) > max [eq min[1, [|gk]*], 6]
or if the residual equation is solved to full accuracy, yielding a step dx«.
@ Perform a backtracking linesearch on J along dx yielding a step-length a.
0 Set Xk4+1 = Xk + ok OXk.

with £ € N the model check frequency and {6} a sequence that goes to zero.




A safeguarded saddle algorithm

Global convergence

@ The stopping criterion and the strict convexity of gs: ensure that dx is
"gradient-related":

—gi 0xic > ka|gll? and [[6xi]| < rallg

for some positive constants 0 < k1 < Ka.

@ Applying the linesearch to "gradient-related" directions is sufficient to ensure a
monotonic decrease of the sequence {J(x«)}.

Remarks
@ The sequence {0;} goes to zero and forces GMRES not to stop prematurely.
@ The stopping criterion involves the computation of the quadratic.
> Application of the operators L, D™%, H, R™1.
@ The GMRES algorithm may need more iterations than previsously.

> Potentially more expensive.




Model check frequency: every £ = 25 inner iteration
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Continuous lines: nonlinear cost function J; dashed lines: GN approximation gst.
10 outer iterations (e, = 1072)

@ Better decrease of gs:, but more inner iterations (2 times).

@ Preconditioner Py: better decrease in J.

@ Poor performances of the preconditioners Pg and Pr.
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Conclusion and perspectives

@ Problematic behaviour of the original saddle formulation as general method for
solving the weakly-constrained 4DVar problem.
> Poor correlation between quadratic model decrease and reduction of the
residual of the associated optimality conditions.
> The original saddle formulation may produce reasonable results on some
favourable examples (QG problem, not shown).
@ A safeguarded approach focusing on quadratic reduction has been suggested.
> Stopping criterion based on periodical evaluations of the quadratic function
and use of a linesearch.
> Decrease in the cost function values at each outer iteration despite possible
chaotic behaviour in the inner iterations.
> Increase in the computational costs (more inner iterations, operator D™ in
the quadratic function).

@ Avoiding the use of D717

D> Approximately solving the linear system (Dx = z).

> Convergence analysis for noisy/inexact computation of D™*
@ Preconditioners for the saddle formulation.



Thank you!
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Model check frequency: every £ = 1 inner iteration
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Continuous lines: nonlinear cost function J; dashed lines: GN approximation gst.

1ot =

10 outer iterations (e, = 1072)
Reduction in J every outer iteration.
Preconditioner Py,: oscillations but best decrease.

Poor performances of the preconditioners Pg and Pr.

Computational costs: more inner iterations, valuation of g per inner iteration.




Numerical experiments

A Burgers system
@ Discretization (first-order upwind scheme and second-order centered scheme):
1 n n uln n n v n n n .

E(U;Jrl —ui)+ E(Uiﬂ —uiq) — W(“Hl —2uj + ui"y) = g(iAx, nAt)
with Ax = 0.01 (n = 100), At =1.107%, v = 0.25, T = 0.03 and N, = 50.

x¢ = 0.1sin(27x), V¥x €[0,1]

Vji=1:New xf=Mi(x1)+€", € ~N(0,oml)

ol = 1104

@ Observations: Vj =1: N yj =H;(xf) + €, € ~N(0,1.10"%1,),
with m; = 20. R; diagonal such that x(R;) = 10°.

Xp = x5+ €, e® ~ N(0,1.10721,)

Vi=1:New xj=M(xi-1)+¢€", € ~ N(0,021,)
B=o3(al,+(1—a)B), with B;; = e_d(tié)z, such that x(B) = 10°.

@ Model error: Q; similar to B such that x(Q;) ~ 1.610°.

@ True solution: with

@ Background:




The linearized subproblems

State Formulation Forcing Formulation

o1 1 1 1 _
min o [|Lox — bl|3-: + S IIHox — d3-:  min 5llop — bl|5-1 + SIHL 'op — d|[3-2

dp

@ Matrix-vector products with L and H @ Change of variables: Jp = Léx

naturally parallel.

yp @ Matrix-vector products with L™! is a
@ Preconditioning is difficult: priori sequential.
p— D1/2E7T(LTD71L)E71D1/2 @ Preconditioning is straightforward:
structure is similar to the
can be ill-conditionned depending on strong-constrained case.

the accuracy of L™1.

Inverse of covariance matrices: expensive operation for new systems (hybrid background J

error covariance matrices).




Safeguarded Saddle

Convergence
Remember gs:(0) — gs:(6x) > max (g4 min (1, [|g«|?) , 6))
@ From the termination criterion one gets

eqkig |l gkl? < —&d x — 30! V2 qst () 0k

@ From the positive definiteness of V2gst, we deduce —g,/ dxc > eqrig ||gk||

@ The strict convexity of gst ensures that ||oxk|| < =2l gx|

— Vmin

@ We therefore get that —g/ 6xx > x1||gx||? and ||6xk|| < s2llgk||, in other words,
Oxk is gradient related

@ A cosine condition and the convergence of the linesearch naturally follows.




Some preconditioners for the saddle algorithms

Preconditioners

D o0 L D 0 0
Pn=10 R 0|, Ps=|0 R 0], Pr=
™ o0 o 0 0 S

with S°* = L 'DL" T and L ~ L (square, nonsingular),
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