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What happens when observations surprise the model?

I Presence of outliers in data is a common occurrence.
I Outliers can be bad data points that negatively impact the analysis

quality.
⇒ Data quality control is essential.

I Outliers can also be data points containing new information that
the model is unaware of.

I Data quality control by rejecting observations on the basis of
background departure statistics leads to the inability to capture
small scales in the analysis {Tavolato and Isaksen, QJRMS 2015}.

I Robust data assimilation is needed to properly treat outliers:
I make the analysis less sensitive to bad information, but
I without throwing away (all) possibly good information.

Robust data assimilation. Motivation for robust data assimilation. [2/15]
11th Adjoint workshop, Aveiro, July 2018. Computational Science Lab (http://csl.cs.vt.edu)



What happens when observations surprise the model?

I Presence of outliers in data is a common occurrence.
I Outliers can be bad data points that negatively impact the analysis

quality.
⇒ Data quality control is essential.

I Outliers can also be data points containing new information that
the model is unaware of.

I Data quality control by rejecting observations on the basis of
background departure statistics leads to the inability to capture
small scales in the analysis {Tavolato and Isaksen, QJRMS 2015}.

I Robust data assimilation is needed to properly treat outliers:
I make the analysis less sensitive to bad information, but
I without throwing away (all) possibly good information.

Robust data assimilation. Motivation for robust data assimilation. [2/15]
11th Adjoint workshop, Aveiro, July 2018. Computational Science Lab (http://csl.cs.vt.edu)



What happens when observations surprise the model?

I Presence of outliers in data is a common occurrence.
I Outliers can be bad data points that negatively impact the analysis

quality.
⇒ Data quality control is essential.

I Outliers can also be data points containing new information that
the model is unaware of.

I Data quality control by rejecting observations on the basis of
background departure statistics leads to the inability to capture
small scales in the analysis {Tavolato and Isaksen, QJRMS 2015}.

I Robust data assimilation is needed to properly treat outliers:
I make the analysis less sensitive to bad information, but
I without throwing away (all) possibly good information.

Robust data assimilation. Motivation for robust data assimilation. [2/15]
11th Adjoint workshop, Aveiro, July 2018. Computational Science Lab (http://csl.cs.vt.edu)



Example: robust data assimilation increases resilience
to observation outliers
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(a) Small observation errors.
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(b) One observation outlier.

Figure: Example: assimilation of a scalar variable using five measurements.
Analytical PDFs are shown.
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Robust data assimilation using the Huber norm

Assumption: P
(
y|x
)
=

{
Gaussian for small obs. errors,
Laplace for large obs. errors.

(a) Gaussian, Laplace, Huber PDFs (b) L2, L1, Huber norms

∥∥x
∥∥

HUB
=

dim(x)∑
`=1

Lτ (x`) , Lτ (a) :=

{
1
2 a2, for |a| ≤ τ
τ
(
|a| − 1

2τ
)
, otherwise .
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The need for a rigorous approach to solve Huber norm
data assimilation

Departure statistics for radiosonde
temperatures is well described by a

Huber distribution {E. Holm, L.
Isaksen, C. Tavolato, E. Andersson,
ECMWF training course “Variational

Quality Control”, 2014}.

Current approaches to robust DA:
I {Andersson and Jarvinen, QJRMS 1999} ‘Variational QC’ assumes an

observation likelihood convex combination of ‘normal’ and ’uniform’.
I {Tavolato and Isaksen, ECMWF letter 22, 2009; QJRMS 2015} ‘Huber

4D-Var’ by iterating over incremental 4D-Vars with rescaled observation
cost functions.

I {Roh, Szunyogh, et al MWR 2013}: ‘Huberized EnKF analysis’ done by
clipping EnKF innovations.
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Robust 3D-Var using Huber norm I
I At time ti traditional 3D-Var minimizes the cost function:

J (xi) =
1
2
‖xi − xb

i ‖
2
B−1

i
+

1
2
∥∥R−1/2

i [H(xi)− yi ]
∥∥2

2 .

I The 3D-Var cost function with Huber norm:

J (xi) =
1
2
‖xi − xb

i ‖
2
B−1

i
+

1
2
∥∥R−1/2

i [H(xi)− yi ]
∥∥

HUB
.

I The robust 3D-Var problem:

min J (xi , zi) =
1
2
‖xi − xb

i ‖
2
B−1

i
+

1
2
∥∥zi
∥∥

HUB

subject to zi = R−1/2
i [H(xi)− yi ].

I The augmented Lagrangian:

L(x, z,λ, µ) =
1

2
‖xi − xb

i ‖
2
B−1

i
+

1

2
‖zi‖HUB −

1

2µ
‖λ‖2

2 +
µ

2

∥∥∥∥R−1/2
i [H(xi )− yi ]− zi −

λi

µ

∥∥∥∥2

2
.
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Solving robust 3D-Var by ADMM
Perform outer iterations for k = 0,1, . . . :

1. Fix z{k}i , λ{k}, µ{k}; solve L2-3D-Var with updated observations:

x{k+1}
i := arg min

x

1
2

∥∥∥x− xb
i

∥∥∥2

B−1
i

+
µ{k}

2

∥∥∥R−1/2
i [H(x)− yi ]− z{k}i −

λ
{k}
i

µ{k}

∥∥∥2

2
.

2. Fix x{k+1}
i , λ{k}, µ{k}, and solve via shrinkage procedure:

d{k+1}
i := R−1/2

i

[
H(x{k+1}

i )− yi

]
;

z{k+1}
i = HuberShrinkage(µ{k};d{k+1}

i ;λ{k}).

3. Update λi :
λ
{k+1}
i := λ

{k}
i − d{k+1}

i + z{k+1}
i .

4. Update µ:
µ{k+1} := ρµ{k}, ρ > 1.

Repeat outer iteration.
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Solving robust 3D-Var by half-quadratic minimization
Perform outer iterations for k = 0,1, . . . :

1. Compute u by component-wise regularizationn:

u{k+1}
i = σ

(
R−1/2

i

[
H(x{k})− yi

])
,

σ(a) =
{

1, |a| ≤ τ ;
τ/|a|, |a| > τ.

2. Calculate x{k+1}
i via L2-3D-Var with scaled obs. covariance:

x{k+1}
i = arg min

xi

1
2
‖xi − xb

i ‖2
B−1

i
+

1
2
∥∥R{k}−1/2

i [H(xi)− yi ]
∥∥2

2

R{k}i := R1/2
i diag

(
2/u{k+1}

i

)
R1/2

i .

Repeat outer iteration

Comment: Another robust option is to replace ‖ · ‖HUB by ‖ · ‖L1 .
Different computational algorithm.
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Robust strong-constraint 4D-Var data assimilation

I The robust strong-constraint 4D-Var problem:

min
x0
J (x0, z) :=

1
2
‖x0 − xb

0‖
2
B−1

0
+

1
2

N∑
i=1

‖zi‖HUB

subject to: zi = R−1/2
i [H(xi)− yi ], i = 1,2, · · · ,N,

xi =Mi−1,i(xi−1), i = 1,2, · · · ,N.

I Can be solved by either approach:
I ADMM, or
I half-quadratic algorithms.

I Each inner iteration requires the solution of a (modified) new
L2-4D-Var problem.
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Traditional EnKF data assimilation
I Ensemble space at time ti :

xi = xb
i + Xb

i wi , Xb
i ∈ RNvar×Nens , wi ∈ RNens×1.

I Traditional L2-EnKF: analysis mean weights {Hunt et al, 2007}:

wa
i := arg min

w
(Nens − 1) ‖w‖22 +

∥∥H(xb
i + Xb

i w)− yi
∥∥2

R−1
i
.

I EnSRF {LETKF, Hunt et al, 2007} analysis ensemble weights:

Si :=

(
I +

1
Nens − 1

(
Yb

i
)T R−1

i Yb
i

)−1

= Wi WT
i ,

wa〈`〉
i = wa

i + Wi(:, `), xa〈`〉
i = xb

i + Xb
i wa〈`〉

i .

I Perturbed observations EnKF analysis ensemble weights:

wa〈`〉
i ≈ Si

(
wb〈`〉

i +
1

Nens − 1
(Yb

i )
T R−1

i

(
y〈`〉i −H(x

b
i )
))

.
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Robust EnKF data assimilation
Huber EnKF optimization problem in ensemble space:

min
w,zi

(Nens − 1) ‖w‖2
2 + ‖zi‖HUB s.t. zi = R−1/2

i

[
H
(
xb

i + Xb
i w
)
− yi

]
.

1. Calculate (component-wise):

u{k+1}
i = σ

(
R−1/2

i

[
H
(
xb

i + Xb
i w{k}i

)
− yi

])
.

2. Apply EnSRF with modified observation covariance:

w{k+1}
i = arg min

w
(Nens − 1) ‖w‖2

2 + ‖H(xb
i + Xb

i w)− yi‖2
R{k+1}−1

i

R{k+1}
i

−1 = R−1/2
i diag

(
u{k}/2

)
R−1/2

i .

3. Satisfactory convergence after M iterations. The analysis:

wa
i = w{M}i , wa〈`〉

i = wa
i + W{M}i (:, `),

S{M}i :=

(
I +

1
Nens − 1

(
Yb

i

)T
R{M}−1

i Yb
i

)−1

= W{M}i W{M}i .
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Robust EnKF results for the academic test problem
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(c) Small observation errors.
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(d) One observation outlier.

Figure: Example: assimilation of a scalar variable using five measurements.
Shown are analyses obtained by various EnKF algorithms.
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Results with Shallow Water Equations on the sphere I
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(a) Observations with small random
errors.

100

300

500

0 7200 14400 21600 28800

RM
SE

Time

Forecast
L2
Huber - Half quadratic

(b) Observations with outliers.

Figure: 4D-Var results for the shallow water model on the sphere. The Huber
threshold is τ = 2.
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Results with Shallow Water Equations on the sphere II
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(a) Observations with small random
errors.
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Figure: LETKF results for the shallow water model on the sphere. The Huber
threshold is τ = 1.
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Summary

Robust data assimilation:
1. Rigorous framework for analyses using Huber, L1 norms on

observation errors
2. Applied to robustify: 3D-Var, 4D-Var, EnKF
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