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Motivation
NANOOS model: ingria.coas.oregonstate.edu/rtdav/
Developed by: L. Erofeeva, A. Kurapov, I. Pasmans and P. Yu
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Current forecasting system

t=t0 t=t0+3 dayst=t0-3 days

4DVAR
𝑀(𝑥𝑓𝑜𝑟 0 + 𝛿𝑥)(𝑡0, 𝑡)

𝑥𝑓𝑜𝑟 𝑡
𝛿𝑥

4DVAR



Slide 4 of 24

Nonlinear model
•Kim et al., 2014

•ROMS model 

•3D nonlinear hydrostatic Boussinesq model 

•2km resolution Arakaw-C grid

•40 terrain following layers

•North American Model (NAM) wind forcing

•HYCOM boundary conditions

•TOPEX tides ad boundaries (Egbert et al., 1994; Egbert and 
Erofeeva, 2002)
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Assimilated observations
GOES satellite sea-surface 

temperature
Satellite altimetry (Jason, 

Cryosat, Envisat)

Radial high-frequency radar sea-
surface currents (P. Kosro)
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Background error covariance B
4DVAR performed by the in-house developed AVRORA code

Balance operator covariance (Weaver et al., 2005) 
 Simple, fixed T,S error relation (𝛿𝑆 = −𝛼𝛿𝑇, 𝛼 = 0.16

𝑝𝑠𝑢

𝐶° ) from T,S-diagram

 Linear equation of state
 Thermal wind balance
 No correction to depth-integrated transport

Static in time.
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Regional dynamics
Strongly variable on regional 
and short time scales

Southerly winds: 
 River plume flows northward

Northerly winds:
 River plume turns south

 Upwelling deep ocean water 
(𝜌 ≥ 1026.5 𝑘𝑔𝑚−3)

 Upwelling moves plume in 
offshore direction

Time scale system: 2-10 
days (Hickey et al.,1998)

Columbia 
River

Plume
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E4DVAR method

t=t0 t=t0+3 dayst=t0-3 days

4DVAR 
with 
B(t0)

Perturbed winds
• Perturbed observations 

for ensemble members. 
(Houtekamer and 
Mitchell, 1998).

• Monte-Carlo localization 
(Pasmans and Kurapov, 
2017).

• Restricted B-conjugate 
gradient (Gürol et al., 
2014) preconditioning.

• Parallel  expansion of 
the search space in 
which a iterative 
solution is sought. 

• Lower-rank 
approximation inverse 
reused for ensemble 
members (similar to S-
EVIL, Auligné et al., 
2016) . 
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Outline
Compare covariances from the balance operator B with ensemble B.

Compare model result with respect to
 Assimilated observations

 Independent T,S-buoy observations

 Glider T,S-relation 

Present salinity constraining scheme. 

Experiments 19 April 2011-1 October 2011:
 No data assimilation (No DA)

 B constructed from an ensemble (Ens)

 B constructed from an ensemble with a scheme controlling salinity corrections (Ens-con)

 B constructed using the balance operator covariance with a scheme controlling salinity corrections (Bal-
con)
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Open ocean balance operator covariance
Balance operator SST,· -covariances

T,T-covariance T,S-covariance

50 km radius
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Ensemble covariance: open ocean
On average localized ensemble covariance reproduces the balance operator covariance, but with  
a T-variance a factor 10 smaller. 

Averaged localized SST,· -covariances

T,S-covarianceT,T-covariance

50 km radius
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Ensemble covariance: fronts
Temperature correlated 
with cross-front 
velocities instead of anti-
cyclonic velocities.

Localized SST,· -ensemble covariance 9 July 2011

50 km radius
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Ensemble surface (co)variance
General magnitude 
T-variance and T,S-
covariance smaller 
than balance 
operator 
equivalents (0.81◦C2, 
-0.13 ppt ◦C)

Large magnitudes 
near fronts. 

Large magnitudes T
and S at different 
locations. 

T-variance
T,S-covariance at the 

same point5C isotherms 
1C isotherms

31.5ppt Isohaline 
>31.5ppt isohalines
<31.5ppt isohalines
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Analysis-forecast RMSE per window
DA reduces errors in analyses 
and forecasts

E4DVAR slightly outperforms 
Balance Operator covariance. 

Experiment SST [C] u [m/s] SSH 
[m]

σ 0.768 0.112 0.020

No DA 1.189 0.180 0.063

B ens 0.775
0.963

0.104
0.131

0.038
0.049

B ens-con 0.777
0.970

0.104
0.133

0.039
0.049

B bal-con 0.763
1.001

0.114
0.137

0.042
0.050

Window-averaged RMSE
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NH10 comparison
E4DVAR as accurate as satellite 
SST (+) near surface. 

E4DVAR more accurate below the 
surface layer. 

Balance Operator performance 
deteriorates if no satellite SST 
observations near NH10 are 
present. 

Average RMSE 4/19-10/1

Image source: 
http://www.ndbc.noaa.gov/station_page.php?sta
tion=46094
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NH10 comparison
E4DVAR produces more accurate 
results for salinity near the 
surface. 

Average RMSE 4/19-10/1 Average bias 4/19-10/1
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T,S-relation
 Deformation T,S-relation 
using Balance Operator

Using E4DVAR removes 
deformation 

Forecasts 19 April 2011-30 June 2011

−
1

𝛼
=

𝛿𝑇

𝛿𝑆

Image source: 
https://www.niwa.co.nz/coasts-and-
oceans/research-projects/using-ocean-
gliders-to-understand-the-biophysical-
characterisation-of-new-zealands-shelf
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T,S-relation
 Deformation T,S-relation 
using Balance Operator

Using E4DVAR removes 
deformation 

Forecasts 19 April 2011-30 June 2011

−
1

𝛼
=

𝛿𝑇

𝛿𝑆
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T,S-relation
E4DVAR correctly captures 
T,S-relation when it reverts 
to -0.16 ppt/◦C

Forecasts 1 July 2011 – 1 October 2011

𝛿𝑆 = −𝛼𝛿𝑇
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DA induces large corrections plume size
No constraint on salinity  Assimilation with ensemble B can instantly 

increase/decrease the size of the plume → violation 
conservation salinity. 
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Salinity constraining scheme
Divide domain up into a hierarchy 
of boxes of different sizes.

Add penalty to the cost-function 
for DA induced changes in average 
salinity of each box.

Large-scale changes in surface 
salinity cause the total salinity 
penalty to increase exponentially. 

Salinity boxes

𝐽′ = 𝐽 +  

𝑖

( 𝑆 𝑎𝑛𝑎,𝑖 − 𝑆 𝑓𝑜𝑟,𝑖)
2

𝜎𝑖
2

Change average 
salinity due to DA

Weighting based on 
variability in No DA

𝑖

< 𝑆 >𝑖=
1

𝐴𝑖
 
𝐴𝑖

𝑆 dA
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Constraining affects DA changes plume
Constraining salinity drastically 
reduces changes in plume water 
volume by data assimilation.

Constraining does not completely 
eliminate the  changes to plume water 
volume by DA. 

Plume water volume south of the Columbia River

Find plume water volume per grid cell by solving

𝑆𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑉𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙

= 𝑆𝑓𝑟𝑒𝑠ℎ𝑉𝑓𝑟𝑒𝑠ℎ + 𝑆𝑜𝑐𝑒𝑎𝑛(𝑉𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙−𝑉𝑓𝑟𝑒𝑠ℎ)

𝑆𝑓𝑟𝑒𝑠ℎ = 0.3 𝑝𝑝𝑡, 𝑆𝑜𝑐𝑒𝑎𝑛 = 32.2 𝑝𝑝𝑡

Shown 2 slides 
ago

On the next slide
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DA corrections are not physical. 
No constraint on salinity  Comparison with Argo float shows that the large DA 

corrections to salinity reduce surface salinity too much. 

ARGO salinity profile 3 September

Ensemble 
covariance→too

fresh  

Constraining 
improves 

results

Image source: 
https://samcharlesjones.files.word
press.com/2015/07/argo_final2-
copy.jpg
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Conclusions
In the presence of a river plume the currently used Balance Operator covariance is not a good 
approximation for the background error covariance. 

Use of an ensemble-based background error covariance has some benefits over the use of a 
Balance Operator based background error covariance:
 Better representation of the T,S-relation along the Newport line.

 Produces forecasts with lower RMSEs for NH10 and for satellite SST, SSH and HFR surface velocities. 

As a result of the large T,S-covariances in the ensemble covariance, data assimilation corrections 
to SST can generate unphysical changes in the size and salinity of the plume.
 Implementing tracer conservation laws as (weak) constraint necessary in future studies. 
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Questions?

I .  PASMANS 

A.L.  KURAPOV

J.A. BARTH, P.M. KOSRO, R.K.  SHEARMAN
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Sea-surface salinity
Sea-surface salinity from analyses

When using 
E4DVAR 
assimilation 
severely impacts 
the extend and 
salinity of the 
plume. 
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Reason plume size corrections
Large salinity corrections are caused by 
large corrections to SST in combination 
with the presence of large T,S-
covariances. 

T,S-covariance (1x,2x,4x balance operator 
covariance)

DA correction to surface salinity (-1,-2,-3 ppt)
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Open ocean balance operator covariance
Balance operator SST,· -covariances

T,T-covariance T,S-covariance

Balance operator SST,· -covariances along 47◦N

T,T-covariance

T,S-covariance

T,v-covariance

50 km radius
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Ensemble covariance: open ocean
On average localized ensemble covariance reproduces the balance operator covariance, but with  
a T-variance a factor 10 smaller. 

Averaged localized SST,· -covariances

T,S-covarianceT,T-covariance

Averaged SST,· -covariances along 47◦N

T,T-covariance

T,S-covariance

T,v-covariance

50 km radius
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Strong 4DVAR

Assumption that P(𝛿𝑥), P(  𝑜|𝛿𝑥) are Gaussian

Model error at the 
beginning of  𝑥𝑓𝑜𝑟

Observations

Courtier et al., 1994: “A strategy for operational implementation of 4D‐Var, using an incremental approach.” Quarterly Journal of the Royal 
Meteorological Societey,  120, 1367-1387. 

Model error at the 
beginning of  𝑥𝑓𝑜𝑟

Background model 
error covariance

Observational error 
covariance

Lin. sampling operator

Tangent linear model 
(AVRORA) Observational error

𝑃(−𝛿𝑥|  𝑜) ~ exp(- J(𝛿𝑥) ) J(𝛿𝑥) =
1

2
𝛿𝑥𝑇𝐁−1𝛿𝑥 +

1

2
 𝑑 − 𝐇𝐌𝛿𝑥

𝑇
𝐑−1(  𝑑 − 𝐇𝐌𝛿𝑥)

Innovation vector: 
 𝑑 =  𝑜 − 𝐻𝑀(  𝑥𝑓𝑜𝑟)

GOAL DATA ASSIMILATION: find 𝛿𝑥 that maximizes 𝑃(−𝛿𝑥|  𝑜) ↔ 
minimize J(𝛿𝑥)
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Model error covariance B
Temperature-salinity and temperature-

velocity  covariance at the surface

Temperature-salinity covariance in a zonal cross-
section 

Balance operator covariance (Weaver et al., 
2005) 

𝛿𝑆 = 𝛾𝛿𝑇
𝛿𝜌/𝜌0 = −𝛼𝛿𝑇 + 𝛽𝛿𝑆

𝛿𝑣 = −
𝑔

𝜌0𝑓

𝜕𝛿𝜌

𝜕𝑥

𝛿𝑢 =
𝑔

𝜌0𝑓

𝜕𝛿𝜌

𝜕𝑦
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Perturbations
 Add noise N(0,R) to observations (Houtekamer and Mitchell, 1998)

Wind: stochastic model based around NCEI NAM fields.

𝑤𝑚𝑒𝑚𝑏𝑒𝑟  𝑟, 𝑡 = 𝑤𝑁𝐴𝑀(  𝑟, 𝑡)+𝑤𝐿𝑎𝑟𝑔𝑒(  𝑟,t)+𝑤𝑆𝑚𝑎𝑙𝑙( 𝑟, 𝑡)
 𝑤𝑁𝐴𝑀 wind from NAM model (12 km resolution)

 𝑤𝐿𝑎𝑟𝑔𝑒( 𝑟,t) large scale NAM model error

 𝑤𝑆𝑚𝑎𝑙𝑙( 𝑟, 𝑡) small scale NAM model error
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Large-scale wind perturbations
Large scale wind perturbation:

𝑤𝐿𝑎𝑟𝑔𝑒  𝑟, t =  𝑖=1
10 𝜆𝑖(𝑡)𝐸𝑂𝐹1(  𝑟) [ 𝑁  𝜆; 0, 𝜎𝐿 ]

◦ As e.g. Hénaff et al. (2009) with modifications
◦ 𝜆𝑖(𝑡) assumed to be drawn from AR1 process with zero mean. 

Correlation over 24h: 0.026
◦ Standard deviation 𝜆𝑖(𝑡)determined by applying a Gibbs sampler to 

error with daily ASCAT data (Milliff et al.,2011):

𝑃  𝜆,𝑤𝑆, 𝜎𝐿 , 𝜎𝑆|𝑤𝐴𝑠𝑐𝑎𝑡 ~𝑁 𝑤𝐴𝑠𝑐𝑎𝑡
 𝜆, 𝑤𝑆, 𝜎𝐴 𝑁(𝑤𝑆; 0, 𝜎𝑆)𝐼𝐺(𝜎𝑆)𝑵 𝝀; 𝟎, 𝝈𝑳 𝑰𝑮(𝝈𝑳)

Prior
Posteriori

EOF wind fields

Probability distribution 𝜎𝐿,1, 𝜎𝐿,4
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Small-scale wind perturbations
Small scale wind perturbations:
 Wind fields have a red spectrum 

 Linear combination of Daubechie-2 wavelets (Wikle et al.,2001)  are used used 
to reproduce this.  

 𝑤𝑆 scaled such that 𝑣𝑎𝑟(𝑤𝑆) = 2𝜎𝑆
2 = 1𝑚2𝑠−2

Spectral density of zonal (solid) and meridional 
(dashed) scatterometer winds (Chin et al., 1998)

Example small-scale wind 
field

NAM
Ens.
Fit

Spectral density v in NAM and 
wind field ensemble members
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Primal vs dual formulation
Goal: minimize J(𝛿𝑥) =

1

2
𝛿𝑥𝑇𝐁−1𝛿𝑥 +

1

2
 𝑑 − 𝐇𝐌𝛿𝑥

𝑇
𝐑−1(  𝑑 − 𝐇𝐌𝛿𝑥)

Primal solution:

(𝐁−1 + 𝐌𝑇𝐇𝑇𝐑−1𝐇𝐌)𝛿𝑥=𝐌𝑇𝐇𝑇𝐑−1  𝑑

Dual solution:

(𝐇𝐌𝐁 𝐌𝑇𝐇𝑇 + 𝐑)  𝜒=  𝑑, 𝛿𝑥=B𝐌𝑇𝐇𝑇  𝜒

B: background error 
covariance
R: observational error 
covariance
M: tangent linear 
model
H: sampling operator
 𝑑: innovation vector

𝛿𝑥: 4DVAR correction
 𝜒: solution dual
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Primal vs dual formulation
Dual solution:

(𝐇𝐌𝐁 𝐌𝑇𝐇𝑇 + 𝐑)  𝜒=  𝑑, 𝛿𝑥=B𝐌𝑇𝐇𝑇  𝜒

SVD preconditioned:

Calculate random representers:

𝐂−𝟏/𝟐(𝐇𝐌𝐁 𝐌𝑇𝐇𝑇 + 𝐑)𝐂−𝟏/𝟐  𝜒=𝐂−𝟏/𝟐  𝑑, 𝛿𝑥=B𝐌𝑇𝐇𝑇𝜒 = B𝐌𝑇𝐇𝑇𝐂−𝟏/𝟐  𝜒

U𝚲𝐕T = (𝐇𝐌𝐁 𝐌𝑇𝐇𝑇 + 𝐑)𝚫

𝐂−𝟏/𝟐 = 𝐔𝚲−1/2𝐔T + (𝐈- 𝐔𝐔T)

Pro: dim(  𝜒)<<dim( 𝛿𝑥)

Con: poor convergence in primal space

B: background error 
covariance
R: observational error 
covariance
M: tangent linear 
model
H: sampling operator
C: preconditioner
 𝑑: innovation vector

𝛿𝑥: 4DVAR correction
 𝜒: solution dual
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Problems E4DVAR
Computationally challenging

1. 4DVAR needs to applied to multiple ensemble members. 

2. 4DVAR requires multiple sequential conjugate gradient iterations to solve

 Solution for 1: 
 Conjugate gradient minimizes1,2 ||  𝜒𝑖 −  𝜒|| 𝐁𝐀: 

 𝜒𝑖 = 𝐕𝒊(𝐕𝑖
𝑇 𝐁A𝐕𝒊)

−1𝐕𝑖
𝑇 𝐁𝐀  𝜒 = 𝐕𝒊(𝐕𝑖

𝑇 𝐁A𝐕𝒊)
−1𝐕𝑖

𝑇 𝐁  𝑑

with sp(𝐕𝒊) being the Krylov space.  

 Recycle 𝐕𝒊: for nth ensemble member  𝜒𝑛,𝑖 = 𝐕𝒊(𝐕𝑖
𝑇 𝐁A𝐕𝒊)

−1𝐕𝑖
𝑇 𝐁(  𝑑𝒏+  𝜀)

 𝜀 is drawn from standard Gaussian. Similar Krylov space reuse, but different implementation as in EVIL3.

B: background error 
covariance
R: observational error 
covariance
M: tangent linear 
model
H: sampling operator
 𝑑: innovation vector

𝛿𝑥: 4DVAR correction
 𝜒: solution dual

(𝐑−1/2𝐇𝐌𝐁𝐌𝑇𝐇𝑇𝐑−1/2 + 𝐈)  𝜒=𝐑−1/2  𝑑, 𝛿𝑥=B𝐌𝑇𝐇𝑇𝐑−1/2  𝜒

( 𝐁 + 𝐈)  𝜒=A  𝜒 =  𝑑, 𝛿𝑥=B𝐌𝑇𝐇𝑇𝐑−1/2  𝜒

1Trefethen, Lloyd N., and David Bau III. 1997. Numerical Linear Algebra. Vol. 50. Siam.
2Gurol, S., A. T. Weaver, A. M. Moore, A. Piacentini, H. G. Arango, and S. Gratton. 2014. “B-Preconditioned Minimization Algorithms for Variational Data Assimilation with the Dual Formulation.” Quarterly Journal of the Royal Meteorological Society 140 (679): 
539–56. 
3Auligné, Thomas, Benjamin Ménétrier, Andrew C. Lorenc, and Mark Buehner. 2016. “Ensemble–Variational Integrated Localized Data Assimilation.” Monthly Weather Review 144 (10): 3677–96

Projection 
operator
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Parallel 4DVAR
Solution 2: expand sp(𝐕𝒊) with m>1 vectors per iteration. 

How to find these vectors:

◦ Use <  𝑑  𝑑𝑇 > = ( 𝐁 + 𝐈) and SVD to estimate eigenvalues and eigenvector of  𝐁 ≈ 𝐖𝚲𝐖T

◦ Search for linear combinations eigenvectors. 

◦ Minimization error ||𝜒 − 𝜒𝑖+1|| 𝐁𝐀↔ minimization weighted in cluster variance → K-means

𝑐1𝑤1 + 𝑐2𝑤2 + +𝑐𝑗−1𝑤𝑗−1 + 𝑐𝑗𝑤𝑗 + +𝑐𝑁−1𝑤𝑁−1 + 𝑐𝑁𝑤𝑁 =  𝑑𝑖

1st cluster
Residual previous 

iteration
mth cluster



Slide 41 of 24

Problems E4DVAR
Parallel method makes minimization

with less than 13 iterations feasible. 𝜀~(𝑖 + 1)−1.7

𝜀~(𝑖 + 1)−2.4

𝜀 =
||  𝑑 − 𝐀  𝜒𝑖||  𝐵

||  𝑑||  𝐵
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Ensemble covariance localization
Raw ensemble covariance:

with x the daily-averaged fields at the beginning of the assimilation window

Localized ensemble covariance using MC localization (Pasmans and Kurapov, MWR 2017 in press)

B: background covariance
x: ensemble member
 𝐱: ensemble mean
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Ensemble covariance localization
Faster computation than Gaspari and Cohn 
(1999) if localization distances are comparable 
and number of masks < number of grid points

Smooths spectrum ensemble members

Raw Localized



Slide 44 of 24



Slide 45 of 24



Slide 46 of 24



Slide 47 of 24

Motivation

Fishing (photo source: amigocharters.com) Debris tracking Oil spill modeling (image source: 

Greenpeace)

Forecasting of ocean conditions serves economical, 
safety and environmental purposes. 


