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Observation Error Covariance Matrix

• Observation errors assumed 

uncorrelated in data assimilation

• Observation errors in real data 

are found to be correlated
(Stewart et al, 2009, 2013;  Bormann et al, 2010; 

Waller et al, 2013, 2014a.)

• Using observation error 

correlations in data assimilation 

is shown to improve the analysis
(Stewart et al, 2008, 2010, 2014;  Weston, 2014.)

Observation Errors 



It is important to be able to account for observation error 

correlations:

• More of available data used (avoids thinning)

• More information content

• Better analysis accuracy

• Improved NWP forecast skill scores
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It is important to be able to account for observation error 

correlations:

• More of available data used (avoids thinning)

• More information content

• Better analysis accuracy

• Improved NWP forecast skill scores

Error correlations can be diagnosed by techniques such

as Deroziers et al (DBCP) or Hollingsworth-Lönnberg 

Observation Errors
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Problems for DA:

Diagnosed correlation matrices:

• Non-symmetric

• Variances too small

• Not positive-definite

• Very ill-conditioned   

Aim: to understand / enable the use of (diagnosed)    

correlated observation errors in DA



Minimize with respect to initial state       :

Optimal Bayesian Estimate

The solution at the minimum,  xa , is the analysis.



Rate of convergence and accuracy of the solution 

are bounded in terms of the condition number of the 

Hessian of the variational cost function: 

Sensitivity of the Problem

where  λ denotes an eigenvalue and the Hessian is: 

S
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We can establish the following theorem:
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Conditioning of Hessian

We can establish the following theorem:

Now the upper bound grows as                 grows and 

depends also on the observation operator. 

Haben et al, 2011; Haben 2011, Tabeart, 2016, Tabeart et al,2018



Summary: Conditioning of the Problem

We find that the condition number  of  S  increases as:

• the observations become more accurate 

• the observation spacing decreases 

• the prior (background) becomes less accurate 

• the prior error correlation length scales increase

• the observation error covariance becomes 

ill-conditioned

Haben et al, 2011; Haben 2011, Tabeart, 2016, Tabeart et al,2018



Reconditioning R

To improve the conditioning of  R (and  S ) we alter 

the eigenstructure of  R so as to obtain a specified 

condition number for the modified covariance matrix by:

• Ridge regression  - add constant to all diagonal 

elements.

• Eigenvalue modification:  increase the smallest 

eigenvalues of R to a threshold value that ensures 

the desired condition number, keeping the rest   

unchanged.

Details given in talk by Jemima Tabeart.



Operational Tests - Met Office

Experiments using the Met Office 1-DVar Observation 

Pre-processing System (OPS) for retrievals:

• Aim to test qualitative conclusions in an operational   

system.

• Focus on observations from IASI (Infrared 

Atmospheric Sounding Interferometer) instrument 

(on MetOp-A satellite). Note the observation operator   

is non-linear in this case.

• Investigate how changing the minimum eigenvalue of 

R affects the convergence of the iterations  – we only  

show results using the ridge regression method.



Results - 1



Results - 2

Rraw – Raw (symmetrised) matrix;  Rold – Old MO diagonal matrix;

Rctrl – Current MO diagonal;          R1500 – Reconditioned with κ = 1500;

R1000 – Reconditioned  κ = 1000;    R500 – Reconditioned with κ = 500;

R67 – Reconditioned with κ = 67; 



Results - 3

Shown are the retrieved temperature and humidity profiles for 

4 different choices of R: Roper, Runpre, R500 and R67.



Summary: Operational Experiments

• Investigated the effects including observation error 

correlations in Met Office 1-D Var system.

• Impact on temperature retrievals was minimal, the 

impact on humidity retrievals much larger.

• Reducing the condition number of R reduces the 

number of iterations required for convergence.

• Decreasing the observation error variance increases 

the required number of iterations.

Tabeart, 2016; Tabeart et al, in prep



Future 

Many more challenges left!
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