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The Ensemble of Data Assimilations (EDA)

The EDA is :
an ensemble of cycled 3D or 4DVars with perturbed model,
observations and surface/boundary conditions.
the variational counterpart of the stochastic EnKF

Why running an EDA ?
The EDA provides an ensemble of analyses and short-range forecasts
(backgrounds) that can be used to :

build flow-dependent background error statistics for deterministic
variational schemes
(e.g., the B-matrix of a 3D-Var or EnVar scheme) ;
initialize an Ensemble Prediction System.
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The AROME EDA in our NWP suite
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The EDA based on 3DVars : formulation

Ensemble of 3DVars, for every member k ∈ J1 : mK

J (xk) = 1
2 (xk

b − xk)Bk−1(xk
b − xk) + 1

2
(
yk

o −Hk(xk)
)
Rk−1(yk

o −Hk(xk)
)

yk
o : perturbed observations for member k

xk : (perturbed) background for member k.

Incremental formulation, assuming common B and R
xk = xk

b + δxk

Hk(xk) ≈ Hk(xk
b) + Hkδxk

Solution of a sequence of quadratic problems :

2J(δxk) = ‖δxk‖2
B−1 + ‖dk −Hkδxk‖2

R−1

where dk = yk
o −Hk(xk

b) is the innovation.
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The EDA based on 3DVars : formulation

Equating the gradient to zero :(
B−1 + Hk TR−1Hk)δxk = Hk TR−1dk

Primal formulation, right-B preconditioning :(
I + Hk TR−1HkB

)
vk = Hk TR−1dk

with δxk = Bvk

Linear system solved with the B-inner product

Dual formulation, left-R−1 preconditioning :(
I + R−1Hk TR−1Hk)λk = R−1dk

with δxk = BHk T
λk

Linear system solved with the HkBHk T-inner product
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The EDA based on 3DVars : formulation

Best method to solve for these m linear systems ?
m independent minimizations with a Krylov subspace method ?
A Block-Krylov method ?
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Krylov subspace methods

Linear systems
Akvk = bk

Krylov subspace methods searchs for an approximate solution ṽk
i

from a subspace ṽk
0 + Ki (Ak , rk

0) where

Ki (Ak , rk
0) = Span

(
bk ,Akbk ,A2

kbk , · · · ,Ai−1
k bk

)
Look for the projection ṽk ∈ Ki :

Ak ṽk − bk ⊥ Ki

For symmetric and positive definite Ak , this leads to Conjugate
Gradient method.
For unsymmetric systems this algorithm leads to the Full Orthogonal
Method (FOM).
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Block-FOM

Linear systems

A[v1, · · · , vm] = [b1, · · · , bm]

Note : this requires the same Hessian for every member !
Krylov subspace methods searchs for an approximate solution ṽk

i
from a subspace space Bi :

Bi = Span
(
b1, · · · ,bm,Ab1, · · · ,Abm, · · · ,Ai−1b1, · · · ,Ai−1bm

)
Search subspace is enlarged (dim(Bi ) ≤ i ×m), and every member
uses the information from all other ones.
Look for the projection ṽk ∈ Bi :

Aṽk − bk ⊥ Bi

For symmetric and positive definite A, this leads to Block-CG ; for
unsymmetric systems Block-FOM.
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Block versus non-block-Krylov : operation count
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m independent Krylov block-Krylov with m members

m/iteration m/iteration

∼ i ×m/iteration ∼ i2 ×m/iteration

low cost (i ≤ 100) moderate cost (i ×m ≤ 5000)

Block-Krylov : the only way to win is to have less iterations / much
faster convergence.

♣ Application of operators B,HT,H,R−1 :

♣ Orthonormalisation of basis (scalar products, axpys)

♣ Handling of matrices of size i or i ×m
Use dual formulation !



AROME EDA

Main characteristics
AROME-France AROME EDA

Spatial resolution 1.3 km 3.25 km
Timestep 50 s 100 s

Dynamical core Non-Hydrostatic Hydrostatic
Domain size 1440× 1536 L90 600× 640 L90
Assimilation 1 deterministic 3D-Var 25 perturbed 3D-Var
Frequency 1H 3H

Radar thinning 8 km 20 km
Nodes (64 Go) 48+2 6+1
MPI tasks (fc) 384 120

Adjustements w/r operational settings
We use a common set of perturbed observations yk

o = yo + εk

The obs. operator is linearized around the ensemble mean Hk = H.
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Do we converge faster ?
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Algorithm : block-RB-FOM
block version of the left-R−1 preconditionned Full Orthogonal Method ;
less prone to round-off errors than the Conjugate Gradient ;
with local storage of the basis to reduce the communications.
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A parallelization strategy
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proc. 1 

proc. 4 proc. 3 

proc. 2 

member s 

member t 

member s 

member t 

b) 

proc. 1 

proc. 4 proc. 3 

proc. 2 

member s member 2 member s member 2 

member s member t member s member t 

c) 

a) 

Illustration of the workload distributions implemented in OOPS on the
AROME-France domain for four MPI processes and two members in the
ensemble : workload distribution by member, combined with an underlying
geographical distribution.



Do we run faster ?
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Extended experiments
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Scalability
Increasing ensemble size up to 75 members
Using 10 times more observations (radar, satellite)
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experiments



Conclusions
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The block Krylov methods may be used to solve simultaneously an
ensemble of perturbed minimizations, as encountered in the EDA.
We derive a block algorithm (block-RB-FOM) that works in observation
space to reduce the size of the control vectors (when p � n)
Implemented under OOPS with advanced parallelization strategy
With 25 members, gains in the range 45–55% (in the number of
iterations) and in the range 25–50% (in terms of computational gain).
Block methods are even more advantageous with larger ensemble sizes
and more observations.
Requires however the same Hessian, but may be combined with the
“Mean-Pert” approach to deal with non-linearity in the mode.

There is more in two papers to come in QJRMS :
♣ Mercier et al.,2018b : Speeding up the ensemble data assimilation system of the
limited area model of Météo-France using a block Krylov algorithm (revised).
♣ Mercier et al, 2018a : Block Krylov methods for accelerating ensembles of
variational data assimilations (accepted).


