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Main goal:

Designing a generic method to apply a localization matrix for
EnVar (normalized convolution operator) on any grid type
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PRANCE Explicit convolution

Main goal:

Designing a generic method to apply a localization matrix for
EnVar (normalized convolution operator) on any grid type

Standard methods:
e Spectral/wavelet transforms — regular grid required
e Recursive filters — regular grid required
e Explicit/implicit diffusion — normalization issues
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PRANCE Explicit convolution

Main goal:
Designing a generic method to apply a localization matrix for
EnVar (normalized convolution operator) on any grid type
Standard methods:

e Spectral/wavelet transforms — regular grid required
e Recursive filters — regular grid required
e Explicit/implicit diffusion — normalization issues

Advantages of an explicit convolution C :

e Work on any grid type
e Exact normalization (C. =1)

Drawback: the computational cost scales as O(n?), where n is the
size of the model grid...
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PRANCE Explicit convolution

To limit the computational cost, we approximate C on a subgrid
(subset of n° points of the model grid):

C~Scss’
where

e S is an interpolation from the subgrid to the model grid
e C’°is a convolution matrix on the subgrid

If n° < n, then the total cost scales as O(n) (interpolation cost).
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PRANCE Explicit convolution

To limit the computational cost, we approximate C on a subgrid
(subset of n° points of the model grid):

C~Scss’
where

e S is an interpolation from the subgrid to the model grid
e C’°is a convolution matrix on the subgrid

If n° < n, then the total cost scales as O(n) (interpolation cost).

Issues with this approach:
e If the subgrid density is too coarse compared to the
convolution length-scale, the convolution is distorded.

e Normalization breaks down because of the interpolation: even
if C° is normalized, SC°S" is not.
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PRANCE Convolution on a subgrid

Convolution function on model grid

Model grid (blue)

Large convolution length-scale
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PRANCE Convolution on a subgrid

Subsampling: 1 point over 3

Model grid (blue) and subgrid (red)

Large convolution length-scale
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PRANCE Convolution on a subgrid

Subsampling: 1 point over 6

Model grid (blue) and subgrid (red)

Large convolution length-scale
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PRANCE Convolution on a subgrid

Subsampling: 1 point over 12

Model grid (blue) and subgrid (red)

Large convolution length-scale
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PRANCE Convolution on a subgrid

Subsampling: 1 point over 15

Model grid (blue) and subgrid (red)

Large convolution length-scale
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PRANCE Convolution on a subgrid

Convolution function on model grid

Model grid (blue)

Small convolution length-scale
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PRANCE Convolution on a subgrid

Subsampling: 1 point over 3

Model grid (blue) and subgrid (red)

Small convolution length-scale
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PRANCE Convolution on a subgrid

Subsampling: 1 point over 6

Model grid (blue) and subgrid (red)

Small convolution length-scale
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PRANCE Convolution on a subgrid

Subsampling: 1 point over 12

Model grid (blue) and subgrid (red)

Small convolution length-scale
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PRANCE Convolution on a subgrid

Subsampling: 1 point over 15

Model grid (blue) and subgrid (red)

Small convolution length-scale
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PRANCE Convolution on a subgrid

Normalization issue:

Model grid (blue) and subgrid (red)
Large convolution length-scale
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PRANCE Convolution on a subgrid

Normalization issue:

Model grid (blue) and subgrid (red)
Large convolution length-scale



Principles Grids Convolution Parallelization BUMP Conclusions
(a 000000 oo 00000 [eJele) o o

PRANCE Convolution on a subgrid

Normalization issue:

Model grid (blue) and subgrid (red)
Large convolution length-scale
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PRANCE Convolution on a subgrid

Normalization issue:

Model grid (blue) and subgrid (red)
Large convolution length-scale
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PRANCE Convolution on a subgrid

Normalization issue:

Model grid (blue) and subgrid (red)
Large convolution length-scale
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PRANCE Explicit convolution

The NICAS method (Normalized Interpolated Convolution from an
Adaptive Subgrid) is given by:

C=NSC°S"N”
where

e N is a diagonal normalization matrix.
e The subgrid is locally adapted to the convolution length-scale.
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PRANCE Explicit convolution

The NICAS method (Normalized Interpolated Convolution from an
Adaptive Subgrid) is given by:

C=NSC°S"N”
where

e N is a diagonal normalization matrix.
e The subgrid is locally adapted to the convolution length-scale.

Several questions:

What subgrid?
What convolution function?

What parallelization method?
What software infrastructure?
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e The model grid is subsampled to define the convolution
subgrid following three steps:

1. horizontal subsampling, level-independent,
2. vertical subsampling, similar for all columns,
3. horizontal subsampling, level-dependent.

Full model grid
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FRANCE Subgrid definition

e The model grid is subsampled to define the convolution
subgrid following three steps:

1. horizontal subsampling, level-independent,
2. vertical subsampling, similar for all columns,
3. horizontal subsampling, level-dependent.

Step 1: horizontal subsampling, level-independent
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METEO

FRANCE Subgrid definition

e The model grid is subsampled to define the convolution
subgrid following three steps:

1. horizontal subsampling, level-independent,
2. vertical subsampling, similar for all columns,
3. horizontal subsampling, level-dependent.

Step 2: vertical subsampling, similar for all columns
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METEO

FRANCE Subgrid definition

e The model grid is subsampled to define the convolution
subgrid following three steps:

1. horizontal subsampling, level-independent,
2. vertical subsampling, similar for all columns,
3. horizontal subsampling, level-dependent.

Step 3: horizontal subsampling, level-dependent
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FRANCE Subgrid definition

e The model grid is subsampled to define the convolution
subgrid following three steps:

1. horizontal subsampling, level-independent,
2. vertical subsampling, similar for all columns,
3. horizontal subsampling, level-dependent.

e Each step takes the local convolution length-scales (horizontal
or vertical) into account.
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Subgrid definition

The model grid is subsampled to define the convolution
subgrid following three steps:

1. horizontal subsampling, level-independent,
2. vertical subsampling, similar for all columns,
3. horizontal subsampling, level-dependent.

Each step takes the local convolution length-scales (horizontal
or vertical) into account.

The interpolation from the subgrid to the model grid is built
backward from these three steps:

S  =[model grid] _S" SY S° [subgrid]
~— ~~ ~—~ ~—~
. Total Horizontal Vertical  Horizontal
interpolation level- level-

independent dependent
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PRANCE Horizontal grid definition

Blue dots: basic subset
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PRANCE Horizontal grid definition

Blue dots: basic subset

Red dots: final subset with a short convolution length-scale
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PRANCE Horizontal grid definition

Blue dots: basic subset

Red dots: final subset with a medium convolution length-scale
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PRANCE Horizontal grid definition

Blue dots: basic subset

Red dots: final subset with a large convolution length-scale
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ERANCE Convolution function

Gaspari and Cohn (1999) function, global support radius r
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ERANCE Convolution function

Gaspari and Cohn (1999) function, local support radius r
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scale — homogenous subgrid

Homogeneous convolution length
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PRANCE Length-scale and mesh density

Heterogenous convolution length-scale — heterogenous subgrid:
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A fast trial-and-error algorithm using a K-D tree ensures that the

horizontal subsampling is well distributed.
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PRANCE Length-scale and mesh density

Convolution with a homogenous length-scale
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PRANCE Length-scale and mesh density

Convolution with a heterogeneous length-scale
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PRANCE Sharp convolution length-scale gradients

Gaspari and Cohn (1999) function, local support radius r
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PRANCE Sharp convolution length-scale gradients

Gaspari and Cohn (1999) function, local support radius r

— heterogeneous normalized distance d’ Z k1 (network)

g

e

S
AT
T

=]
'S
o
I
I

0.20

Support radius

PRI R
L

0.00

1.0
0.8
0.6
0.4
0.2
0.0

GC function

N P I I I

LB RS EERE AR RERE LARS

13



Convolution
[ ]

@

PRANCE Sharp convolution length-scale gradients

Convolution functions with complex boundaries:
e distance-based approach (left)
e network-based approach (right)
Distance-based Network-based
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NICAS is exactly normalized for both approaches.
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is defined as the number of points

required to describe half the Gaspari and Cohn (1999) function.
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The subgrid resolution p is defined as the number of points
required to describe half the Gaspari and Cohn (1999) function.
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The subgrid resolution p is defined as the number of points
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PRANCE Subgrid resolution

The subgrid resolution p is defined as the number of points
required to describe half the Gaspari and Cohn (1999) function.
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PRANCE Subgrid resolution

The subgrid resolution p is defined as the number of points
required to describe half the Gaspari and Cohn (1999) function.

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
b 0.55
&) 0.5
0.45
¢ 0.4
o f 0.35
/ 0.3
0.25
0.2
0.15

0.05

p = 6 (1590 points)

14



Principles Grids Convolution Parallelization BUMP Conclusions
[e]e] [} [}

(a 000000 000®0 [eJele)

PRANCE Subgrid resolution

The subgrid resolution p is defined as the number of points
required to describe half the Gaspari and Cohn (1999) function.

p = 4 (706 points)
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PRANCE Square-root formulation

e Basic NICAS method:
C =NSCc°S™NT
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e Basic NICAS method:
C = NSC°S™N"
e If C* is built as USUST, then the square-root of C is given by:
U = NSU*

which can be useful for square-root preconditioning in EnVar
minimizations.
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e Basic NICAS method:
C = NSC°S™N"
e If C* is built as USUST, then the square-root of C is given by:
U = NSU*

which can be useful for square-root preconditioning in EnVar
minimizations.

e Using the formulation:
C =NSUSU"s™N"

also ensures that C is positive-semidefinite.

15
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PRANCE Square-root formulation

e Basic NICAS method:
C = NSC°S™N"
e If C* is built as USUST, then the square-root of C is given by:
U = NSU*

which can be useful for square-root preconditioning in EnVar
minimizations.

e Using the formulation:
C = NSU°*U"s"N"
also ensures that C is positive-semidefinite.

e A good approximation of the Gaspari and Cohn (1999)
function square-root can be obtained by multiplying the
function length-scale by 0.721 (empirical value).
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ERANCE MPI| communications

Running NICAS with several MPI tasks:

e Communications are always performed on the subgrid,
never on the model grid.
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ERANCE MPI| communications

Running NICAS with several MPI tasks:

e Communications are always performed on the subgrid,
never on the model grid.

e Only local communications between halos are required,
no global communications.
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ERANCE MPI| communications

Running NICAS with several MPI tasks:

e Communications are always performed on the subgrid,
never on the model grid.
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ERANCE MPI| communications

Running NICAS with several MPI tasks:

e Communications are always performed on the subgrid,
never on the model grid.

e Only local communications between halos are required,
no global communications.

e NICAS can be applied with 1, 2 or 3 communication steps:
C=NS X U° X UT ® S"N"
More communication steps = smaller halos.

e Hybrid parallization with OpenMP is used to improve efficiency.
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Comparison of the standard spectral method with NICAS:
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Elapsed time decreases for more communication steps.
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Subgrid resolution and length-scale impact

Preliminary tests show a slight sensitivity to the subgrid resolution
and to the convolution length-scale:

Elapsed time (ms)

Elapsed time for one application of NICAS - ARPEGE (T399, L105) - 64 MPI tasks
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The computational cost increases for:
e a more precise description of the convolution function,
e a smaller convolution lenght-scale.
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The BUMP software
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PRANCE The BUMP software

BUMP : B matrix on an Unstructured Mesh Package
e Capabilities:
1. Covariance / correlation diagnostics
Localization functions diagnostics [Ménétrier et al., 2015]
Hybridization diagnostics [Ménétrier and Auligné, 2015]
Local correlation tensors diagnostics
Preparation and application of the NICAS method

RN
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BUMP : B matrix on an Unstructured Mesh Package
e Capabilities:
1. Covariance / correlation diagnostics
2. Localization functions diagnostics [Ménétrier et al., 2015]
3. Hybridization diagnostics [Ménétrier and Auligné, 2015]
4. Local correlation tensors diagnostics
5. Preparation and application of the NICAS method

Object-oriented Fortran code ~ 16.700 lines

e Two execution modes:
e Offline : execution using a namelist and NetCDF input data
e Inline: called from another code, via a generic interface

Used as a research tool by scientists at: CERFACS, ECMWF,
Météo-France, MetOffice, NASA, NCAR, NOAA (JCSDA)

e Open-source CeCILL-C license, code available at:
https://github.com/benjaminmenetrier/bump
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has been developed: NICAS

23



Principles Grids Convolution
[e]e]

(ﬂ 000000

00000 [e]e]e}

Parallelization BUMP Conclusions
o] [ ]

ERANCE Conclusions

e A new implementation of localization for EnVar applications
has been developed: NICAS

e NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

23



Principles Grids Convolution Parallelization BUMP
(e]e] [¢]

Conclusions
(ﬂ 000000 00000 [eJele) °

ERANCE Conclusions

e A new implementation of localization for EnVar applications
has been developed: NICAS

e NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

e NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

23



Principles Grids Convolution Parallelization BUMP Conclusions
(a 000000 oo 00000 [eJele) o °

ERANCE Conclusions

e A new implementation of localization for EnVar applications
has been developed: NICAS

e NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

e NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

e NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
sufficient (> 100).

23



Principles Grids Convolution Parallelization BUMP Conclusions
(a 000000 oo 00000 [eJele) o °

ERANCE Conclusions

e A new implementation of localization for EnVar applications
has been developed: NICAS

e NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

e NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

e NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
sufficient (> 100).

e The open-source software BUMP implementing NICAS is
available online. It can be easily interfaced with other codes.

23



Principles Grids Convolution Parallelization BUMP Conclusions
(a 000000 oo 00000 [eJele) o °

ERANCE Conclusions

e A new implementation of localization for EnVar applications
has been developed: NICAS

e NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

e NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

e NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
sufficient (> 100).

e The open-source software BUMP implementing NICAS is
available online. It can be easily interfaced with other codes.

Thank you for your attention

23



Principles Grids Convolution Parallelization BUMP Conclusions
(a 000000 oo 00000 [eJele) o °

ERANCE Conclusions

e A new implementation of localization for EnVar applications
has been developed: NICAS

e NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

e NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

e NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
sufficient (> 100).

e The open-source software BUMP implementing NICAS is
available online. It can be easily interfaced with other codes.

Thank you for your attention

23



Principles Grids Convolution Parallelization BUMP Conclusions
(a 000000 oo 00000 [eJele) o °

ERANCE Conclusions

e A new implementation of localization for EnVar applications
has been developed: NICAS

e NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

e NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

e NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
sufficient (> 100).

e The open-source software BUMP implementing NICAS is
available online. It can be easily interfaced with other codes.

Thank you for your attention

23



(a °0

PRANCE Vertical grid definition

Levels are subsampled depending on the vertical convolution
length-scale:
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Black dots: model levels - red dots: subgrid levels
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PRANCE Normalization computation

Normalization coefficient:
~1/2
N, = (s7susuTs™s))
_ HUSTST(SI.Hfl

where 4. is a Dirac vector (1 at point /, 0 elsewhere).
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Normalization coefficient:
~1/2
N, = (s7susuTs™s))
_ HUSTST(SI.Hfl
where 4. is a Dirac vector (1 at point /, 0 elsewhere).
e Brute force computation: full computation of USTST(SI. for

every model grid point /.
— prohibitive cost ~ O(n?)

e Efficient computation: exact determination of the subgrid
nodes involved in the computation of USTSTél,, allowing for a
fast computation (number of involved nodes < n®).

— affordable cost ~ O(n)
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