

The Normalized Interpolated Convolution on an Adaptive Subgrid (NICAS) method, a new implementation of localization for EnVar applications

Benjamin Ménétrier Etienne Arbogast Loïk Berre Yannick Trémolet Météo-France/CNRS, CNRM Météo-France/CNRS, CNRM Météo-France/CNRS, CNRM JCSDA

Workshop on Sensitivity Analysis and Data Assimilation July 2nd, 2018 - Aveiro, Portugal

METEO FRANCE	Principles ●○○○○○	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ○
	Expli	cit con	volution			

Main goal:

Designing a generic method to apply a localization matrix for EnVar (normalized convolution operator) on any grid type

- Spectral/wavelet transforms \rightarrow regular grid required
- Recursive filters
- Explicit/implicit diffusion → normalization issues

- Work on any grid type
- Exact normalization (C_{ii} = 1)

METEO FRANCE	Principles ●○○○○○	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ○	
	Explicit convolution						

Main goal:

Designing a generic method to apply a localization matrix for EnVar (normalized convolution operator) on any grid type

Standard methods:

- Spectral/wavelet transforms \rightarrow regular grid required
- Recursive filters \rightarrow regular grid required
- Explicit/implicit diffusion \rightarrow normalization issues

- Work on any grid type
- Exact normalization (C_{ii} = 1)

METEO FRANCE	Principles ●○○○○○	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ○	
	Explicit convolution						

Main goal:

Designing a generic method to apply a localization matrix for EnVar (normalized convolution operator) on any grid type

Standard methods:

- Spectral/wavelet transforms \rightarrow regular grid required
- Recursive filters \rightarrow regular grid required
- Explicit/implicit diffusion \rightarrow normalization issues

Advantages of an explicit convolution C:

- Work on any grid type
- Exact normalization $(C_{ii} = 1)$

Drawback: the computational cost scales as $O(n^2)$, where n is the size of the model grid ...

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions		
O	000000	00	00000	000	0	0		
METEO FRANCE	Explicit convolution							

To limit the computational cost, we approximate C on a subgrid (subset of n^s points of the model grid):

 $\mathbf{C} \approx \mathbf{S} \mathbf{C}^{s} \mathbf{S}^{\mathrm{T}}$

where

- ${\bf S}$ is an interpolation from the subgrid to the model grid
- \mathbf{C}^s is a convolution matrix on the subgrid

If $n^s \ll n$, then the total cost scales as O(n) (interpolation cost).

Issues with this approach:

- If the subgrid density is too coarse compared to the convolution length-scale, the convolution is distorded.
- Normalization breaks down because of the interpolation: even if C^s is normalized, SC^sS^T is not.

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions		
O	000000	00	00000	000	0	0		
METEO FRANCE	Explicit convolution							

To limit the computational cost, we approximate C on a subgrid (subset of n^s points of the model grid):

 $\mathbf{C} \approx \mathbf{S} \mathbf{C}^{s} \mathbf{S}^{\mathrm{T}}$

where

- ${\bf S}$ is an interpolation from the subgrid to the model grid
- **C**^s is a convolution matrix on the subgrid

If $n^s \ll n$, then the total cost scales as O(n) (interpolation cost).

Issues with this approach:

- If the subgrid density is too coarse compared to the convolution length-scale, the convolution is distorded.
- Normalization breaks down because of the interpolation: even if C^s is normalized, SC^sS^T is not.

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{O}	00000	00	00000	000	0	0
METEO FRANCE	Conv	olution	on a subg	rid		

Convolution function on model grid

Model grid (blue) Large convolution length-scale

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
	000000	00	00000	000	0	0
METEO	Carry			ut al		
FRANCE	Conv	olution	on a subg	ria		

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
	000000	00	00000	000	0	0
METEO	Carry			ut al		
FRANCE	Conv	olution	on a subg	ria		

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{O}	00000	00	00000	000	0	0
METEO FRANCE	Conv	olution	on a subg	rid		

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{O}	00000	00	00000	000	0	0
METEO FRANCE	Conv	olution	on a subg	rid		

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions		
\bullet	000000	00	00000	000	0	0		
METEO FRANCE	Convolution on a subgrid							

Convolution function on model grid

Model grid (blue) Small convolution length-scale

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
O	000000	00	00000	000	0	0
METEO FRANCE	Conv	olution	on a subg	rid		

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{O}	000000	00	00000	000	0	0
METEO FRANCE	Conv	olution	on a subg	rid		

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{C}	000000	00	00000	000	0	0
METEO FRANCE	Conv	olution	on a subg	rid		

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{C}	000000	00	00000	000	0	0
METEO FRANCE	Conv	olution	on a subg	rid		

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{O}	000000	00	00000	000	0	0
METEO FRANCE	Conv	olution	on a subg	rid		

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{O}	000000	00	00000	000	0	0
METEO FRANCE	Conv	olution	on a subg	rid		

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{O}	000000	00	00000	000	0	0
METEO FRANCE	Conv	olution	on a subg	rid		

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{O}	000000	00	00000	000	0	0
METEO FRANCE	Conv	olution	on a subg	rid		

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
	000000	00	00000	000	0	0
METEO FRANCE	Conv	olution	on a subg	rid		

	Principles ○○○○●	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ∘			
METEO FRANCE	Expli	Explicit convolution							

The **NICAS** method (Normalized Interpolated Convolution from an Adaptive Subgrid) is given by:

 $\widetilde{\boldsymbol{\mathsf{C}}} = \boldsymbol{\mathsf{N}}\boldsymbol{\mathsf{S}}\boldsymbol{\mathsf{C}}^{s}\boldsymbol{\mathsf{S}}^{T}\boldsymbol{\mathsf{N}}^{T}$

where

- N is a diagonal normalization matrix.
- The subgrid is locally adapted to the convolution length-scale.

Several questions:

- What subgrid?
- What convolution function?
- What parallelization method?
- What software infrastructure?

	Principles ○○○○●	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ∘			
METEO FRANCE	Expli	Explicit convolution							

The **NICAS** method (Normalized Interpolated Convolution from an Adaptive Subgrid) is given by:

 $\widetilde{\mathbf{C}} = \mathbf{N} \mathbf{S} \mathbf{C}^{s} \mathbf{S}^{\mathrm{T}} \mathbf{N}^{\mathrm{T}}$

where

- N is a diagonal normalization matrix.
- The subgrid is locally adapted to the convolution length-scale.

Several questions:

- What subgrid?
- What convolution function?
- What parallelization method?
- What software infrastructure?

\mathbf{C}	Principles 000000	Grids ○○	Convolution	Parallelization	BUMP ○	Conclusions ○
METEO FRANCE	Outli	ne				

Principles

Subgrid definition

Convolution function

Parallelization

The BUMP software

Conclusions

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\bigcirc	000000	•0	00000	000	0	0
METEO FRANCE	Subg	rid defi	nition			

- The model grid is subsampled to define the convolution subgrid following three steps:
 - 1. horizontal subsampling, level-independent,
 - 2. vertical subsampling, similar for all columns,
 - 3. horizontal subsampling, level-dependent.

Full model grid

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\sim	000000	•0	00000	000	0	0
	Subg	rid defi	nition			

- The model grid is subsampled to define the convolution subgrid following three steps:
 - 1. horizontal subsampling, level-independent,
 - 2. vertical subsampling, similar for all columns,
 - 3. horizontal subsampling, level-dependent.

Step 1: horizontal subsampling, level-independent

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\sim	000000	•0	00000	000	0	0
	Subg	rid defi	nition			

- The model grid is subsampled to define the convolution subgrid following three steps:
 - 1. horizontal subsampling, level-independent,
 - 2. vertical subsampling, similar for all columns,
 - 3. horizontal subsampling, level-dependent.

Step 2: vertical subsampling, similar for all columns

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\sim	000000	•0	00000	000	0	0
	Subg	rid defi	nition			

- The model grid is subsampled to define the convolution subgrid following three steps:
 - 1. horizontal subsampling, level-independent,
 - 2. vertical subsampling, similar for all columns,
 - 3. horizontal subsampling, level-dependent.

Step 3: horizontal subsampling, level-dependent

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
	000000	•0	00000	000	0	0
	Subg	rid defi	nition			

- The model grid is subsampled to define the convolution subgrid following three steps:
 - 1. horizontal subsampling, level-independent,
 - 2. vertical subsampling, similar for all columns,
 - 3. horizontal subsampling, level-dependent.
- Each step takes the local convolution length-scales (horizontal or vertical) into account.
- The interpolation from the subgrid to the model grid is built backward from these three steps:

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
METEO FRANCE	000000	•0	00000	000	0	0
	Subg	rid defi	nition			

- The model grid is subsampled to define the convolution subgrid following three steps:
 - 1. horizontal subsampling, level-independent,
 - 2. vertical subsampling, similar for all columns,
 - 3. horizontal subsampling, level-dependent.
- Each step takes the local convolution length-scales (horizontal or vertical) into account.
- The interpolation from the subgrid to the model grid is built backward from these three steps:

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{O}	000000	0●	00000	000	0	0
	Horiz	ontal g	rid definiti	on		

Blue dots: basic subset

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\sim	000000	0●	00000	000	0	0
METEO	Horiz	ontal ø	rid definiti	on		
FRANCE		oncur e		011		

Blue dots: basic subset Red dots: final subset with a short convolution length-scale

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{O}	000000	0●	00000	000	0	0
	Horiz	ontal g	rid definiti	on		

Blue dots: basic subset Red dots: final subset with a medium convolution length-scale

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
\mathbf{O}	000000	0●	00000	000	0	0
	Horiz	ontal g	rid definiti	on		

Blue dots: basic subset Red dots: final subset with a large convolution length-scale

METEO FRANCE	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ∘
	Outli	ne				

Principles

Subgrid definition

Convolution function

Parallelization

The BUMP software

Conclusions

Gaspari and Cohn (1999) function, global support radius r

 \rightarrow homogeneous normalized distance $d'_{ij} = \frac{d_{ij}}{r}$

\mathbf{C}	Principles 000000	Grids oo	Convolution ●○○○○	Parallelization	BUMP ∘	Conclusions ∘
METEO FRANCE	Conv	olution	function			

Gaspari and Cohn (1999) function, global support radius r

 \rightarrow homogeneous normalized distance $d'_{ij} = \frac{d_{ij}}{r}$

Gaspari and Cohn (1999) function, local support radius r

ightarrow heterogeneous normalized distance $d'_{ij} = rac{d_{ij}}{\sqrt{(r_i^2 + r_j^2)/2}}$

	Principles 000000	Grids 00	Convolution ○●○○○	Parallelization	BUMP ∘	Conclusions ∘
METEO FRANCE	Lengt	th-scale	e and mesh	density		

Homogeneous convolution length-scale \rightarrow homogenous subgrid:

A fast trial-and-error algorithm using a K-D tree ensures that the horizontal subsampling is well distributed.

	Principles 000000	Grids 00	Convolution ○●○○○	Parallelization	BUMP ∘	Conclusions ∘
METEO FRANCE	Lengt	th-scale	e and mesh	density		

Heterogenous convolution length-scale \rightarrow heterogenous subgrid:

A fast trial-and-error algorithm using a K-D tree ensures that the horizontal subsampling is well distributed.

	Principles 000000	Grids oo	Convolution ○●○○○	Parallelization	BUMP ∘	Conclusions ∘
METEO FRANCE	Leng	th-scale	e and mesh	density		

Convolution with a homogenous length-scale

	Principles 000000	Grids	Convolution ○●○○○	Parallelization	BUMP ∘	Conclusions ○
METEO FRANCE	Lengt	th-scale	e and mesh	density		

Convolution with a heterogeneous length-scale

Gaspari and Cohn (1999) function, local support radius r

 \rightarrow heterogeneous normalized distance $d'_{ij} = \frac{a_{ij}}{\sqrt{(r_i^2 + r_i^2)/2}}$

Gaspari and Cohn (1999) function, local support radius r

 \rightarrow heterogeneous normalized distance $\widetilde{d}'_{ij} = \sum_{k=i}^{j-1} d'_{k,k+1}$ (network)

\mathbf{O}	Principles 000000	Grids oo	Convolution ○○●○○	Parallelization	BUMP ∘	Conclusions ∘
METEO FRANCE	Sharp	convo	lution leng	th-scale grad	dients	

Convolution functions with complex boundaries:

- distance-based approach (left)
- network-based approach (right)

NICAS is exactly normalized for both approaches.

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions			
O	000000	00	00000	000	0	0			
METEO FRANCE	Subgrid resolution								

 $\rho = 8 (2827 \text{ points})$

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions			
O	000000	00	00000	000	0	0			
METEO FRANCE	Subgrid resolution								

 $\rho = 6$ (1590 points)

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
(000000	00	00000	000	0	0
	Subg	rid reso	olution			

 $\rho = 4$ (706 points)

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions				
\bullet	000000	00	00000	000	0	0				
METEO FRANCE	Subg	Subgrid resolution								

 $\rho = 8 \ (2827 \ \text{points})$

7 3	Principles 000000	Grids oo	Convolution ○○○●○	Parallelization	BUMP ∘	Conclusions ○
METEO	Suba	rid reso				

 $\rho = 6$ (1590 points)

	Principles 000000	Grids	Convolution ○○○●○	Parallelization	BUMP ∘	Conclusions ○
	Sube	rid reso	olution			

 $\rho = 4$ (706 points)

METEO FRANCE	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ○	
	Square-root formulation						

 $\widetilde{\boldsymbol{\mathsf{C}}} = \boldsymbol{\mathsf{N}}\boldsymbol{\mathsf{S}}\boldsymbol{\mathsf{C}}^{s}\boldsymbol{\mathsf{S}}^{T}\boldsymbol{\mathsf{N}}^{T}$

- If C^s is built as $U^s U^{sT}$, then the square-root of \widetilde{C} is given by: $\widetilde{U} = N S U^s$

which can be useful for square-root preconditioning in EnVar minimizations.

• Using the formulation:

 $\widetilde{\mathbf{C}} = \mathbf{N}\mathbf{S}\mathbf{U}^{s}\mathbf{U}^{s\mathrm{T}}\mathbf{S}^{\mathrm{T}}\mathbf{N}^{\mathrm{T}}$

also ensures that $\widetilde{\mathbf{C}}$ is positive-semidefinite.

METEO FRANCE	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ○	
	Square-root formulation						

$$\widetilde{\mathbf{C}} = \mathbf{N}\mathbf{S}\mathbf{C}^{s}\mathbf{S}^{\mathrm{T}}\mathbf{N}^{\mathrm{T}}$$

- If C^s is built as $U^s U^{sT},$ then the square-root of \widetilde{C} is given by: $\widetilde{U} = N {\pmb{S}} U^s$

which can be useful for square-root preconditioning in ${\sf EnVar}$ minimizations.

• Using the formulation:

 $\widetilde{\mathbf{C}} = \mathbf{N}\mathbf{S}\mathbf{U}^{s}\mathbf{U}^{s\mathrm{T}}\mathbf{S}^{\mathrm{T}}\mathbf{N}^{\mathrm{T}}$

also ensures that $\widetilde{\mathbf{C}}$ is positive-semidefinite.

METEO FRANCE	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ○	
	Square-root formulation						

$$\widetilde{\mathbf{C}} = \mathbf{N}\mathbf{S}\mathbf{C}^{s}\mathbf{S}^{\mathrm{T}}\mathbf{N}^{\mathrm{T}}$$

- If C^s is built as $U^s U^{sT},$ then the square-root of \widetilde{C} is given by: $\widetilde{U} = N {\pmb{S}} U^s$

which can be useful for square-root preconditioning in ${\sf EnVar}$ minimizations.

• Using the formulation:

 $\widetilde{\mathbf{C}} = \mathbf{N}\mathbf{S}\mathbf{U}^{s}\mathbf{U}^{sT}\mathbf{S}^{T}\mathbf{N}^{T}$

also ensures that $\widetilde{\textbf{C}}$ is positive-semidefinite.

\mathbf{C}	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ○		
METEO FRANCE	Square-root formulation							

$$\widetilde{\mathbf{C}} = \mathbf{N}\mathbf{S}\mathbf{C}^{s}\mathbf{S}^{\mathrm{T}}\mathbf{N}^{\mathrm{T}}$$

- If C^s is built as $U^s U^{sT},$ then the square-root of \widetilde{C} is given by: $\widetilde{U} = N {\pmb{S}} U^s$

which can be useful for square-root preconditioning in ${\sf EnVar}$ minimizations.

• Using the formulation:

 $\widetilde{\boldsymbol{\mathsf{C}}} = \boldsymbol{\mathsf{N}}\boldsymbol{\mathsf{S}}\boldsymbol{\mathsf{U}}^{{}^{\boldsymbol{\mathsf{s}}}\boldsymbol{\mathsf{T}}}\boldsymbol{\mathsf{S}}^{\mathrm{T}}\boldsymbol{\mathsf{N}}^{\mathrm{T}}$

also ensures that $\widetilde{\textbf{C}}$ is positive-semidefinite.

METEO FRANCE	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ∘
	Outli	ne				

Principles

Subgrid definition

Convolution function

Parallelization

The BUMP software

Conclusions

\mathbf{C}	Principles 000000	Grids oo	Convolution	Parallelization ●○○	BUMP ∘	Conclusions ∘
METEO FRANCE	MPI	commi	inications			

- Communications are always performed **on the subgrid**, never on the model grid.
- Only **local** communications between halos are required, no global communications.
- NICAS can be applied with 1, 2 or 3 communication steps: $\widetilde{\mathbf{C}} = \mathbf{NS} \boxtimes \mathbf{U}^{s} \boxtimes \mathbf{U}^{sT} \boxtimes \mathbf{S}^{T} \mathbf{N}^{T}$

More communication steps \Rightarrow smaller halos.

\mathbf{C}	Principles 000000	Grids oo	Convolution	Parallelization ●○○	BUMP ∘	Conclusions ∘
METEO FRANCE	MPI	commı	inications			

- Communications are always performed **on the subgrid**, never on the model grid.
- Only **local** communications between halos are required, no global communications.
- NICAS can be applied with 1, 2 or 3 communication steps: $\widetilde{\mathbf{C}} = \mathbf{NS} \boxtimes \mathbf{U}^{s} \boxtimes \mathbf{U}^{sT} \boxtimes \mathbf{S}^{T} \mathbf{N}^{T}$

More communication steps \Rightarrow smaller halos.

\mathbf{C}	Principles 000000	Grids oo	Convolution	Parallelization ●○○	BUMP ∘	Conclusions ∘
METEO FRANCE	MPI	commı	inications			

- Communications are always performed **on the subgrid**, never on the model grid.
- Only **local** communications between halos are required, no global communications.
- NICAS can be applied with 1, 2 or 3 communication steps: $\widetilde{\textbf{C}} = \textbf{NS} \ \boxtimes \ \textbf{U}^{s} \ \boxtimes \ \textbf{U}^{sT} \ \boxtimes \ \textbf{S}^{T}\textbf{N}^{T}$

More communication steps \Rightarrow smaller halos.

\mathbf{C}	Principles 000000	Grids oo	Convolution	Parallelization ●○○	BUMP ∘	Conclusions ∘
METEO FRANCE	MPI	commı	inications			

- Communications are always performed **on the subgrid**, never on the model grid.
- Only **local** communications between halos are required, no global communications.
- NICAS can be applied with 1, 2 or 3 communication steps: $\widetilde{\textbf{C}} = \textbf{NS} \ \boxtimes \ \textbf{U}^{s} \ \boxtimes \ \textbf{U}^{sT} \ \boxtimes \ \textbf{S}^{T}\textbf{N}^{T}$

More communication steps \Rightarrow smaller halos.

\mathbf{C}	Principles 000000	Grids oo	Convolution	Parallelization ●○○	BUMP ∘	Conclusions ∘
METEO FRANCE	MPI	commı	inications			

- Communications are always performed **on the subgrid**, never on the model grid.
- Only **local** communications between halos are required, no global communications.
- NICAS can be applied with 1, 2 or 3 communication steps: $\widetilde{\textbf{C}} = \textbf{NS} \ \boxtimes \ \textbf{U}^{s} \ \boxtimes \ \textbf{U}^{sT} \ \boxtimes \ \textbf{S}^{T} \textbf{N}^{T}$

More communication steps \Rightarrow smaller halos.

\mathbf{C}	Principles 000000	Grids oo	Convolution	Parallelization ●○○	BUMP ∘	Conclusions ∘
METEO FRANCE	MPI	commı	inications			

- Communications are always performed **on the subgrid**, never on the model grid.
- Only **local** communications between halos are required, no global communications.
- NICAS can be applied with 1, 2 or 3 communication steps: $\widetilde{\mathbf{C}} = \mathbf{NS} \ \boxtimes \ \mathbf{U}^s \ \boxtimes \ \mathbf{U}^{sT} \ \boxtimes \ \mathbf{S}^T \mathbf{N}^T$

More communication steps \Rightarrow smaller halos.

\mathbf{C}	Principles 000000	Grids oo	Convolution	Parallelization ●○○	BUMP ∘	Conclusions ∘
METEO FRANCE	MPI	commı	inications			

- Communications are always performed **on the subgrid**, never on the model grid.
- Only **local** communications between halos are required, no global communications.
- NICAS can be applied with 1, 2 or 3 communication steps: $\widetilde{\mathbf{C}} = \mathbf{NS} \boxtimes \mathbf{U}^{s} \boxtimes \mathbf{U}^{sT} \boxtimes \mathbf{S}^{T} \mathbf{N}^{T}$

More communication steps \Rightarrow smaller halos.

METEO FRANCE	Principles	Grids oo	Convolution	Parallelization ○●○	BUMP ∘	Conclusions ∘	
	Scaling						

Comparison of the standard spectral method with NICAS:

Elapsed time for one application of NICAS - ARPEGE (T399, L105) Elapsed time decreases for more communication steps.

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
METEO FRANCE	Subg	rid reso	lution and	length-scale	impact	

Preliminary tests show a slight sensitivity to the subgrid resolution and to the convolution length-scale:

Elapsed time for one application of NICAS - ARPEGE (T399, L105) - 64 MPI tasks

The computational cost increases for:

- a more precise description of the convolution function,
- a smaller convolution lenght-scale.

METEO FRANCE	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ○	
	Outline						

Principles

Subgrid definition

Convolution function

Parallelization

The BUMP software

Conclusions

	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ●	Conclusions ○
METEO FRANCE	The I	BUM	> software			

- Capabilities:
 - 1. Covariance / correlation diagnostics
 - 2. Localization functions diagnostics [Ménétrier et al., 2015]
 - 3. Hybridization diagnostics [Ménétrier and Auligné, 2015]
 - 4. Local correlation tensors diagnostics
 - 5. Preparation and application of the NICAS method
- Object-oriented Fortran code \sim 16.700 lines
- Two execution modes:
 - Offline : execution using a namelist and NetCDF input data
 - Inline: called from another code, via a generic interface
- Used as a research tool by scientists at: CERFACS, ECMWF, Météo-France, MetOffice, NASA, NCAR, NOAA (JCSDA)
- Open-source CeCILL-C license, code available at: https://github.com/benjaminmenetrier/bumy

	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ●	Conclusions ○
METEO FRANCE	The I	BUM	> software			

- Capabilities:
 - 1. Covariance / correlation diagnostics
 - 2. Localization functions diagnostics [Ménétrier et al., 2015]
 - 3. Hybridization diagnostics [Ménétrier and Auligné, 2015]
 - 4. Local correlation tensors diagnostics
 - 5. Preparation and application of the NICAS method
- Object-oriented Fortran code \sim 16.700 lines
- Two execution modes:
 - Offline : execution using a namelist and NetCDF input data
 - Inline: called from another code, via a generic interface
- Used as a research tool by scientists at: CERFACS, ECMWF, Météo-France, MetOffice, NASA, NCAR, NOAA (JCSDA)
- Open-source CeCILL-C license, code available at: https://github.com/benjaminmenetrier/bun

\mathbf{C}	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ●	Conclusions ○
METEO FRANCE	The I	BUM	> software			

- Capabilities:
 - 1. Covariance / correlation diagnostics
 - 2. Localization functions diagnostics [Ménétrier et al., 2015]
 - 3. Hybridization diagnostics [Ménétrier and Auligné, 2015]
 - 4. Local correlation tensors diagnostics
 - 5. Preparation and application of the NICAS method
- Object-oriented Fortran code \sim 16.700 lines
- Two execution modes:
 - Offline : execution using a namelist and NetCDF input data
 - Inline: called from another code, via a generic interface
- Used as a research tool by scientists at: CERFACS, ECMWF, Météo-France, MetOffice, NASA, NCAR, NOAA (JCSDA)
- Open-source CeCILL-C license, code available at: https://github.com/benjaminmenetrier/bu

6	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ●	Conclusions ○
METEO FRANCE	The I	BUM	> software			

- Capabilities:
 - 1. Covariance / correlation diagnostics
 - 2. Localization functions diagnostics [Ménétrier et al., 2015]
 - 3. Hybridization diagnostics [Ménétrier and Auligné, 2015]
 - 4. Local correlation tensors diagnostics
 - 5. Preparation and application of the NICAS method
- Object-oriented Fortran code \sim 16.700 lines
- Two execution modes:
 - Offline : execution using a namelist and NetCDF input data
 - Inline: called from another code, via a generic interface
- Used as a research tool by scientists at: CERFACS, ECMWF, Météo-France, MetOffice, NASA, NCAR, NOAA (JCSDA)

 Open-source CeCILL-C license, code available at: https://github.com/benjaminmenetrier/bu

\mathbf{C}	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ●	Conclusions ○
METEO FRANCE	The I	BUM	> software			

- Capabilities:
 - 1. Covariance / correlation diagnostics
 - 2. Localization functions diagnostics [Ménétrier et al., 2015]
 - 3. Hybridization diagnostics [Ménétrier and Auligné, 2015]
 - 4. Local correlation tensors diagnostics
 - 5. Preparation and application of the NICAS method
- Object-oriented Fortran code \sim 16.700 lines
- Two execution modes:
 - Offline : execution using a namelist and NetCDF input data
 - Inline: called from another code, via a generic interface
- Used as a research tool by scientists at: CERFACS, ECMWF, Météo-France, MetOffice, NASA, NCAR, NOAA (JCSDA)
- Open-source CeCILL-C license, code available at: https://github.com/benjaminmenetrier/bump

	Principles 000000	Grids oo	Convolution	Parallelization	BUMP ∘	Conclusions ○		
METEO FRANCE	Outline							

Principles

Subgrid definition

Convolution function

Parallelization

The BUMP software

Conclusions
6	Principles 000000	Grids 00	Convolution	Parallelization	BUMP ∘	Conclusions •	
METEO FRANCE	Conclusions						

- A new implementation of localization for EnVar applications has been developed: **NICAS**
- NICAS is heterogeneous and can deal with complex boundaries, yet it is exactly normalized
- NICAS speed is slightly sensitive to the subgrid resolution and convolution length-scale.
- NICAS is as fast as the standard spectral method for ARPEGE (T399, L105) if the number of MPI tasks is sufficient (> 100).
- The open-source software **BUMP** implementing **NICAS** is available online. It can be easily interfaced with other codes.

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
Ø	000000	00	00000	000	0	•
METEO FRANCE	Conc	lusions				

- A new implementation of localization for EnVar applications has been developed: **NICAS**
- NICAS is heterogeneous and can deal with complex boundaries, yet it is exactly normalized
- NICAS speed is slightly sensitive to the subgrid resolution and convolution length-scale.
- NICAS is as fast as the standard spectral method for ARPEGE (T399, L105) if the number of MPI tasks is sufficient (> 100).
- The open-source software **BUMP** implementing **NICAS** is available online. It can be easily interfaced with other codes.

 Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
Conc	lusions	00000	000	0	•

- A new implementation of localization for EnVar applications has been developed: **NICAS**
- NICAS is heterogeneous and can deal with complex boundaries, yet it is exactly normalized
- NICAS speed is slightly sensitive to the subgrid resolution and convolution length-scale.
- NICAS is as fast as the standard spectral method for ARPEGE (T399, L105) if the number of MPI tasks is sufficient (> 100).
- The open-source software **BUMP** implementing **NICAS** is available online. It can be easily interfaced with other codes.

	Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
METEO FRANCE	Conc	lusions				•

- A new implementation of localization for EnVar applications has been developed: **NICAS**
- NICAS is heterogeneous and can deal with complex boundaries, yet it is exactly normalized
- NICAS speed is slightly sensitive to the subgrid resolution and convolution length-scale.
- NICAS is as fast as the standard spectral method for ARPEGE (T399, L105) if the number of MPI tasks is sufficient (> 100).
- The open-source software **BUMP** implementing **NICAS** is available online. It can be easily interfaced with other codes.

 Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
Conc	lusions	00000	000	0	•

- A new implementation of localization for EnVar applications has been developed: **NICAS**
- NICAS is heterogeneous and can deal with complex boundaries, yet it is exactly normalized
- NICAS speed is slightly sensitive to the subgrid resolution and convolution length-scale.
- NICAS is as fast as the standard spectral method for ARPEGE (T399, L105) if the number of MPI tasks is sufficient (> 100).
- The open-source software **BUMP** implementing **NICAS** is available online. It can be easily interfaced with other codes.

 Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
Conc	lusions	00000	000	0	•

- A new implementation of localization for EnVar applications has been developed: **NICAS**
- NICAS is heterogeneous and can deal with complex boundaries, yet it is exactly normalized
- NICAS speed is slightly sensitive to the subgrid resolution and convolution length-scale.
- NICAS is as fast as the standard spectral method for ARPEGE (T399, L105) if the number of MPI tasks is sufficient (> 100).
- The open-source software **BUMP** implementing **NICAS** is available online. It can be easily interfaced with other codes.

Thank you for your attention

 Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
Conc	lusions	00000	000	0	•

- A new implementation of localization for EnVar applications has been developed: **NICAS**
- NICAS is heterogeneous and can deal with complex boundaries, yet it is exactly normalized
- NICAS speed is slightly sensitive to the subgrid resolution and convolution length-scale.
- NICAS is as fast as the standard spectral method for ARPEGE (T399, L105) if the number of MPI tasks is sufficient (> 100).
- The open-source software **BUMP** implementing **NICAS** is available online. It can be easily interfaced with other codes.

Thank you for your attention

 Principles	Grids	Convolution	Parallelization	BUMP	Conclusions
Conc	lusions	00000	000	0	•

- A new implementation of localization for EnVar applications has been developed: **NICAS**
- NICAS is heterogeneous and can deal with complex boundaries, yet it is exactly normalized
- NICAS speed is slightly sensitive to the subgrid resolution and convolution length-scale.
- NICAS is as fast as the standard spectral method for ARPEGE (T399, L105) if the number of MPI tasks is sufficient (> 100).
- The open-source software **BUMP** implementing **NICAS** is available online. It can be easily interfaced with other codes.

Thank you for your attention

Vertical grid definition

Levels are subsampled depending on the vertical convolution length-scale:

Black dots: model levels - red dots: subgrid levels

Normalization computation

Normalization coefficient:

$$N_{ii} = \left(\delta_i^{\mathrm{T}} \mathbf{S} \mathbf{U}^{s} \mathbf{U}^{s\mathrm{T}} \mathbf{S}^{\mathrm{T}} \delta_i\right)^{-1/2} \\ = \|\mathbf{U}^{s\mathrm{T}} \mathbf{S}^{\mathrm{T}} \delta_i\|^{-1}$$

where δ_i is a Dirac vector (1 at point *i*, 0 elsewhere).

- Brute force computation: full computation of UsTS^Tδ_i for every model grid point i.
 → prohibitive cost ~ O(n²)
- Efficient computation: exact determination of the subgrid nodes involved in the computation of $\mathbf{U}^{sT}\mathbf{S}^{T}\boldsymbol{\delta}_{j}$, allowing for a fast computation (number of involved nodes $\ll n^{s}$). \rightarrow affordable cost $\sim O(n)$

Normalization computation

Normalization coefficient:

$$N_{ii} = \left(\delta_i^{\mathrm{T}} \mathbf{S} \mathbf{U}^{s} \mathbf{U}^{s\mathrm{T}} \mathbf{S}^{\mathrm{T}} \delta_i\right)^{-1/2} \\ = \|\mathbf{U}^{s\mathrm{T}} \mathbf{S}^{\mathrm{T}} \delta_i\|^{-1}$$

where δ_i is a Dirac vector (1 at point *i*, 0 elsewhere).

- Brute force computation: full computation of UsTS^Tδ_i for every model grid point i.
 → prohibitive cost ~ O(n²)
- Efficient computation: exact determination of the subgrid nodes involved in the computation of $\mathbf{U}^{sT}\mathbf{S}^{T}\boldsymbol{\delta}_{i}$, allowing for a fast computation (number of involved nodes $\ll n^{s}$). \rightarrow affordable cost $\sim O(n)$

Normalization computation

Normalization coefficient:

$$\begin{split} \boldsymbol{N}_{ii} &= \left(\boldsymbol{\delta}_{i}^{\mathrm{T}} \mathbf{S} \mathbf{U}^{s} \mathbf{U}^{s \mathrm{T}} \mathbf{S}^{\mathrm{T}} \boldsymbol{\delta}_{i}\right)^{-1/2} \\ &= \|\mathbf{U}^{s \mathrm{T}} \mathbf{S}^{\mathrm{T}} \boldsymbol{\delta}_{i}\|^{-1} \end{split}$$

where δ_i is a Dirac vector (1 at point *i*, 0 elsewhere).

- Brute force computation: full computation of UsTS^Tδ_i for every model grid point i.
 → prohibitive cost ~ O(n²)
- Efficient computation: exact determination of the subgrid nodes involved in the computation of $\mathbf{U}^{sT}\mathbf{S}^{T}\boldsymbol{\delta}_{j}$, allowing for a fast computation (number of involved nodes $\ll n^{s}$). \rightarrow affordable cost $\sim O(n)$