
The Normalized Interpolated Convolution
on an Adaptive Subgrid (NICAS) method,
a new implementation of localization
for EnVar applications

Benjamin Ménétrier Météo-France/CNRS, CNRM
Etienne Arbogast Météo-France/CNRS, CNRM
Loïk Berre Météo-France/CNRS, CNRM
Yannick Trémolet JCSDA

Workshop on Sensitivity Analysis and Data Assimilation
July 2nd, 2018 - Aveiro, Portugal



Principles Grids Convolution Parallelization BUMP Conclusions

Explicit convolution

Main goal:

Designing a generic method to apply a localization matrix for
EnVar (normalized convolution operator) on any grid type

Standard methods:

• Spectral/wavelet transforms → regular grid required

• Recursive �lters → regular grid required

• Explicit/implicit di�usion → normalization issues

Advantages of an explicit convolution C :

• Work on any grid type

• Exact normalization (C
ii
= 1)

Drawback: the computational cost scales as O(n2), where n is the
size of the model grid...

1



Principles Grids Convolution Parallelization BUMP Conclusions

Explicit convolution

Main goal:

Designing a generic method to apply a localization matrix for
EnVar (normalized convolution operator) on any grid type

Standard methods:

• Spectral/wavelet transforms → regular grid required

• Recursive �lters → regular grid required

• Explicit/implicit di�usion → normalization issues

Advantages of an explicit convolution C :

• Work on any grid type

• Exact normalization (C
ii
= 1)

Drawback: the computational cost scales as O(n2), where n is the
size of the model grid...

1



Principles Grids Convolution Parallelization BUMP Conclusions

Explicit convolution

Main goal:

Designing a generic method to apply a localization matrix for
EnVar (normalized convolution operator) on any grid type

Standard methods:

• Spectral/wavelet transforms → regular grid required

• Recursive �lters → regular grid required

• Explicit/implicit di�usion → normalization issues

Advantages of an explicit convolution C :

• Work on any grid type

• Exact normalization (C
ii
= 1)

Drawback: the computational cost scales as O(n2), where n is the
size of the model grid...

1



Principles Grids Convolution Parallelization BUMP Conclusions

Explicit convolution

To limit the computational cost, we approximate C on a subgrid
(subset of ns points of the model grid):

C≈ SCsST

where

• S is an interpolation from the subgrid to the model grid

• Cs is a convolution matrix on the subgrid

If ns � n, then the total cost scales as O(n) (interpolation cost).

Issues with this approach:

• If the subgrid density is too coarse compared to the
convolution length-scale, the convolution is distorded.

• Normalization breaks down because of the interpolation: even
if Cs is normalized, SCsST is not.

2



Principles Grids Convolution Parallelization BUMP Conclusions

Explicit convolution

To limit the computational cost, we approximate C on a subgrid
(subset of ns points of the model grid):

C≈ SCsST

where

• S is an interpolation from the subgrid to the model grid

• Cs is a convolution matrix on the subgrid

If ns � n, then the total cost scales as O(n) (interpolation cost).

Issues with this approach:

• If the subgrid density is too coarse compared to the
convolution length-scale, the convolution is distorded.

• Normalization breaks down because of the interpolation: even
if Cs is normalized, SCsST is not.

2



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Convolution function on model grid

Model grid (blue)

Large convolution length-scale

3



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Subsampling: 1 point over 3

Model grid (blue) and subgrid (red)

Large convolution length-scale

3



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Subsampling: 1 point over 6

Model grid (blue) and subgrid (red)

Large convolution length-scale

3



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Subsampling: 1 point over 12

Model grid (blue) and subgrid (red)

Large convolution length-scale

3



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Subsampling: 1 point over 15

Model grid (blue) and subgrid (red)

Large convolution length-scale

3



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Convolution function on model grid

Model grid (blue)

Small convolution length-scale

4



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Subsampling: 1 point over 3

Model grid (blue) and subgrid (red)

Small convolution length-scale

4



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Subsampling: 1 point over 6

Model grid (blue) and subgrid (red)

Small convolution length-scale

4



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Subsampling: 1 point over 12

Model grid (blue) and subgrid (red)

Small convolution length-scale

4



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Subsampling: 1 point over 15

Model grid (blue) and subgrid (red)

Small convolution length-scale

4



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Normalization issue:

Model grid (blue) and subgrid (red)

Large convolution length-scale

5



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Normalization issue:

Model grid (blue) and subgrid (red)

Large convolution length-scale

5



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Normalization issue:

Model grid (blue) and subgrid (red)

Large convolution length-scale

5



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Normalization issue:

Model grid (blue) and subgrid (red)

Large convolution length-scale

5



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution on a subgrid

Normalization issue:

Model grid (blue) and subgrid (red)

Large convolution length-scale

5



Principles Grids Convolution Parallelization BUMP Conclusions

Explicit convolution

The NICAS method (Normalized Interpolated Convolution from an
Adaptive Subgrid) is given by:

C̃=NSCsSTNT

where

• N is a diagonal normalization matrix.

• The subgrid is locally adapted to the convolution length-scale.

Several questions:

• What subgrid?

• What convolution function?

• What parallelization method?

• What software infrastructure?

6



Principles Grids Convolution Parallelization BUMP Conclusions

Explicit convolution

The NICAS method (Normalized Interpolated Convolution from an
Adaptive Subgrid) is given by:

C̃=NSCsSTNT

where

• N is a diagonal normalization matrix.

• The subgrid is locally adapted to the convolution length-scale.

Several questions:

• What subgrid?

• What convolution function?

• What parallelization method?

• What software infrastructure?

6



Principles Grids Convolution Parallelization BUMP Conclusions

Outline

Principles

Subgrid de�nition

Convolution function

Parallelization

The BUMP software

Conclusions

7



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid de�nition

• The model grid is subsampled to de�ne the convolution
subgrid following three steps:

1. horizontal subsampling, level-independent,

2. vertical subsampling, similar for all columns,

3. horizontal subsampling, level-dependent.

Full model grid

• Each step takes the local convolution length-scales (horizontal
or vertical) into account.

• The interpolation from the subgrid to the model grid is built
backward from these three steps:

S︸︷︷︸
Total

interpolation

= [model grid] Sh︸︷︷︸
Horizontal

level-
independent

Sv︸︷︷︸
Vertical

Ss︸︷︷︸
Horizontal

level-
dependent

[subgrid]

8



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid de�nition

• The model grid is subsampled to de�ne the convolution
subgrid following three steps:

1. horizontal subsampling, level-independent,

2. vertical subsampling, similar for all columns,

3. horizontal subsampling, level-dependent.

Step 1: horizontal subsampling, level-independent

• Each step takes the local convolution length-scales (horizontal
or vertical) into account.

• The interpolation from the subgrid to the model grid is built
backward from these three steps:

S︸︷︷︸
Total

interpolation

= [model grid] Sh︸︷︷︸
Horizontal

level-
independent

Sv︸︷︷︸
Vertical

Ss︸︷︷︸
Horizontal

level-
dependent

[subgrid]

8



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid de�nition

• The model grid is subsampled to de�ne the convolution
subgrid following three steps:

1. horizontal subsampling, level-independent,

2. vertical subsampling, similar for all columns,

3. horizontal subsampling, level-dependent.

Step 2: vertical subsampling, similar for all columns

• Each step takes the local convolution length-scales (horizontal
or vertical) into account.

• The interpolation from the subgrid to the model grid is built
backward from these three steps:

S︸︷︷︸
Total

interpolation

= [model grid] Sh︸︷︷︸
Horizontal

level-
independent

Sv︸︷︷︸
Vertical

Ss︸︷︷︸
Horizontal

level-
dependent

[subgrid]

8



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid de�nition

• The model grid is subsampled to de�ne the convolution
subgrid following three steps:

1. horizontal subsampling, level-independent,

2. vertical subsampling, similar for all columns,

3. horizontal subsampling, level-dependent.

Step 3: horizontal subsampling, level-dependent

• Each step takes the local convolution length-scales (horizontal
or vertical) into account.

• The interpolation from the subgrid to the model grid is built
backward from these three steps:

S︸︷︷︸
Total

interpolation

= [model grid] Sh︸︷︷︸
Horizontal

level-
independent

Sv︸︷︷︸
Vertical

Ss︸︷︷︸
Horizontal

level-
dependent

[subgrid]

8



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid de�nition

• The model grid is subsampled to de�ne the convolution
subgrid following three steps:

1. horizontal subsampling, level-independent,

2. vertical subsampling, similar for all columns,

3. horizontal subsampling, level-dependent.

• Each step takes the local convolution length-scales (horizontal
or vertical) into account.

• The interpolation from the subgrid to the model grid is built
backward from these three steps:

S︸︷︷︸
Total

interpolation

= [model grid] Sh︸︷︷︸
Horizontal

level-
independent

Sv︸︷︷︸
Vertical

Ss︸︷︷︸
Horizontal

level-
dependent

[subgrid]

8



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid de�nition

• The model grid is subsampled to de�ne the convolution
subgrid following three steps:

1. horizontal subsampling, level-independent,

2. vertical subsampling, similar for all columns,

3. horizontal subsampling, level-dependent.

• Each step takes the local convolution length-scales (horizontal
or vertical) into account.

• The interpolation from the subgrid to the model grid is built
backward from these three steps:

S︸︷︷︸
Total

interpolation

= [model grid] Sh︸︷︷︸
Horizontal

level-
independent

Sv︸︷︷︸
Vertical

Ss︸︷︷︸
Horizontal

level-
dependent

[subgrid]

8



Principles Grids Convolution Parallelization BUMP Conclusions

Horizontal grid de�nition

Blue dots: basic subset

9



Principles Grids Convolution Parallelization BUMP Conclusions

Horizontal grid de�nition

Blue dots: basic subset

Red dots: �nal subset with a short convolution length-scale

9



Principles Grids Convolution Parallelization BUMP Conclusions

Horizontal grid de�nition

Blue dots: basic subset

Red dots: �nal subset with a medium convolution length-scale

9



Principles Grids Convolution Parallelization BUMP Conclusions

Horizontal grid de�nition

Blue dots: basic subset

Red dots: �nal subset with a large convolution length-scale

9



Principles Grids Convolution Parallelization BUMP Conclusions

Outline

Principles

Subgrid de�nition

Convolution function

Parallelization

The BUMP software

Conclusions

10



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution function

Gaspari and Cohn (1999) function, global support radius r

→ homogeneous normalized distance d ′
ij
=

d
ij

r

11



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution function

Gaspari and Cohn (1999) function, global support radius r

→ homogeneous normalized distance d ′
ij
=

d
ij

r

11



Principles Grids Convolution Parallelization BUMP Conclusions

Convolution function

Gaspari and Cohn (1999) function, local support radius r

→ heterogeneous normalized distance d ′
ij
=

d
ij√

(r2
i
+ r

2
j
)/2

11



Principles Grids Convolution Parallelization BUMP Conclusions

Length-scale and mesh density

Homogeneous convolution length-scale → homogenous subgrid:

A fast trial-and-error algorithm using a K-D tree ensures that the
horizontal subsampling is well distributed.

12



Principles Grids Convolution Parallelization BUMP Conclusions

Length-scale and mesh density

Heterogenous convolution length-scale → heterogenous subgrid:

A fast trial-and-error algorithm using a K-D tree ensures that the
horizontal subsampling is well distributed.

12



Principles Grids Convolution Parallelization BUMP Conclusions

Length-scale and mesh density

Convolution with a homogenous length-scale

12



Principles Grids Convolution Parallelization BUMP Conclusions

Length-scale and mesh density

Convolution with a heterogeneous length-scale

12



Principles Grids Convolution Parallelization BUMP Conclusions

Sharp convolution length-scale gradients

Gaspari and Cohn (1999) function, local support radius r

→ heterogeneous normalized distance d ′
ij
=

d
ij√

(r2
i
+ r

2
j
)/2

13



Principles Grids Convolution Parallelization BUMP Conclusions

Sharp convolution length-scale gradients

Gaspari and Cohn (1999) function, local support radius r

→ heterogeneous normalized distance d̃ ′
ij
=

j−1

∑
k=i

d
′
k,k+1

(network)

13



Principles Grids Convolution Parallelization BUMP Conclusions

Sharp convolution length-scale gradients

Convolution functions with complex boundaries:

• distance-based approach (left)

• network-based approach (right)

NICAS is exactly normalized for both approaches.
13



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid resolution

The subgrid resolution ρ is de�ned as the number of points
required to describe half the Gaspari and Cohn (1999) function.

ρ = 8 (2827 points)
14



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid resolution

The subgrid resolution ρ is de�ned as the number of points
required to describe half the Gaspari and Cohn (1999) function.

ρ = 6 (1590 points)
14



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid resolution

The subgrid resolution ρ is de�ned as the number of points
required to describe half the Gaspari and Cohn (1999) function.

ρ = 4 (706 points)
14



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid resolution

The subgrid resolution ρ is de�ned as the number of points
required to describe half the Gaspari and Cohn (1999) function.

ρ = 8 (2827 points)

14



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid resolution

The subgrid resolution ρ is de�ned as the number of points
required to describe half the Gaspari and Cohn (1999) function.

ρ = 6 (1590 points)

14



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid resolution

The subgrid resolution ρ is de�ned as the number of points
required to describe half the Gaspari and Cohn (1999) function.

ρ = 4 (706 points)

14



Principles Grids Convolution Parallelization BUMP Conclusions

Square-root formulation

• Basic NICAS method:

C̃=NSCsSTNT

• If Cs is built as UsUsT, then the square-root of C̃ is given by:

Ũ=NSUs

which can be useful for square-root preconditioning in EnVar
minimizations.

• Using the formulation:

C̃=NSUsUsTSTNT

also ensures that C̃ is positive-semide�nite.

• A good approximation of the Gaspari and Cohn (1999)
function square-root can be obtained by multiplying the
function length-scale by 0.721 (empirical value).

15



Principles Grids Convolution Parallelization BUMP Conclusions

Square-root formulation

• Basic NICAS method:

C̃=NSCsSTNT

• If Cs is built as UsUsT, then the square-root of C̃ is given by:

Ũ=NSUs

which can be useful for square-root preconditioning in EnVar
minimizations.

• Using the formulation:

C̃=NSUsUsTSTNT

also ensures that C̃ is positive-semide�nite.

• A good approximation of the Gaspari and Cohn (1999)
function square-root can be obtained by multiplying the
function length-scale by 0.721 (empirical value).

15



Principles Grids Convolution Parallelization BUMP Conclusions

Square-root formulation

• Basic NICAS method:

C̃=NSCsSTNT

• If Cs is built as UsUsT, then the square-root of C̃ is given by:

Ũ=NSUs

which can be useful for square-root preconditioning in EnVar
minimizations.

• Using the formulation:

C̃=NSUsUsTSTNT

also ensures that C̃ is positive-semide�nite.

• A good approximation of the Gaspari and Cohn (1999)
function square-root can be obtained by multiplying the
function length-scale by 0.721 (empirical value).

15



Principles Grids Convolution Parallelization BUMP Conclusions

Square-root formulation

• Basic NICAS method:

C̃=NSCsSTNT

• If Cs is built as UsUsT, then the square-root of C̃ is given by:

Ũ=NSUs

which can be useful for square-root preconditioning in EnVar
minimizations.

• Using the formulation:

C̃=NSUsUsTSTNT

also ensures that C̃ is positive-semide�nite.

• A good approximation of the Gaspari and Cohn (1999)
function square-root can be obtained by multiplying the
function length-scale by 0.721 (empirical value).

15



Principles Grids Convolution Parallelization BUMP Conclusions

Outline

Principles

Subgrid de�nition

Convolution function

Parallelization

The BUMP software

Conclusions

16



Principles Grids Convolution Parallelization BUMP Conclusions

MPI communications

Running NICAS with several MPI tasks:

• Communications are always performed on the subgrid,
never on the model grid.

• Only local communications between halos are required,
no global communications.

• NICAS can be applied with 1, 2 or 3 communication steps:

C̃=NS � Us � UsT � STNT

More communication steps ⇒ smaller halos.

• Hybrid parallization with OpenMP is used to improve e�ciency.

17



Principles Grids Convolution Parallelization BUMP Conclusions

MPI communications

Running NICAS with several MPI tasks:

• Communications are always performed on the subgrid,
never on the model grid.

• Only local communications between halos are required,
no global communications.

• NICAS can be applied with 1, 2 or 3 communication steps:

C̃=NS � Us � UsT � STNT

More communication steps ⇒ smaller halos.

• Hybrid parallization with OpenMP is used to improve e�ciency.

17



Principles Grids Convolution Parallelization BUMP Conclusions

MPI communications

Running NICAS with several MPI tasks:

• Communications are always performed on the subgrid,
never on the model grid.

• Only local communications between halos are required,
no global communications.

• NICAS can be applied with 1, 2 or 3 communication steps:

C̃=NS � Us � UsT � STNT

More communication steps ⇒ smaller halos.

• Hybrid parallization with OpenMP is used to improve e�ciency.

17



Principles Grids Convolution Parallelization BUMP Conclusions

MPI communications

Running NICAS with several MPI tasks:

• Communications are always performed on the subgrid,
never on the model grid.

• Only local communications between halos are required,
no global communications.

• NICAS can be applied with 1, 2 or 3 communication steps:

C̃=NS � Us � UsT � STNT

More communication steps ⇒ smaller halos.

• Hybrid parallization with OpenMP is used to improve e�ciency.

17



Principles Grids Convolution Parallelization BUMP Conclusions

MPI communications

Running NICAS with several MPI tasks:

• Communications are always performed on the subgrid,
never on the model grid.

• Only local communications between halos are required,
no global communications.

• NICAS can be applied with 1, 2 or 3 communication steps:

C̃=NS � Us � UsT � STNT

More communication steps ⇒ smaller halos.

• Hybrid parallization with OpenMP is used to improve e�ciency.

17



Principles Grids Convolution Parallelization BUMP Conclusions

MPI communications

Running NICAS with several MPI tasks:

• Communications are always performed on the subgrid,
never on the model grid.

• Only local communications between halos are required,
no global communications.

• NICAS can be applied with 1, 2 or 3 communication steps:

C̃=NS � Us � UsT � STNT

More communication steps ⇒ smaller halos.

• Hybrid parallization with OpenMP is used to improve e�ciency.

17



Principles Grids Convolution Parallelization BUMP Conclusions

MPI communications

Running NICAS with several MPI tasks:

• Communications are always performed on the subgrid,
never on the model grid.

• Only local communications between halos are required,
no global communications.

• NICAS can be applied with 1, 2 or 3 communication steps:

C̃=NS � Us � UsT � STNT

More communication steps ⇒ smaller halos.

• Hybrid parallization with OpenMP is used to improve e�ciency.

17



Principles Grids Convolution Parallelization BUMP Conclusions

Scaling

Comparison of the standard spectral method with NICAS:

Elapsed time for one application of NICAS - ARPEGE (T399, L105)

Elapsed time decreases for more communication steps.
18



Principles Grids Convolution Parallelization BUMP Conclusions

Subgrid resolution and length-scale impact

Preliminary tests show a slight sensitivity to the subgrid resolution
and to the convolution length-scale:

Elapsed time for one application of NICAS - ARPEGE (T399, L105) - 64 MPI tasks

The computational cost increases for:
• a more precise description of the convolution function,
• a smaller convolution lenght-scale.

19



Principles Grids Convolution Parallelization BUMP Conclusions

Outline

Principles

Subgrid de�nition

Convolution function

Parallelization

The BUMP software

Conclusions

20



Principles Grids Convolution Parallelization BUMP Conclusions

The BUMP software

BUMP : B matrix on an Unstructured Mesh Package

• Capabilities:
1. Covariance / correlation diagnostics

2. Localization functions diagnostics [Ménétrier et al., 2015]

3. Hybridization diagnostics [Ménétrier and Auligné, 2015]

4. Local correlation tensors diagnostics

5. Preparation and application of the NICAS method

• Object-oriented Fortran code ∼ 16.700 lines

• Two execution modes:
• O�ine : execution using a namelist and NetCDF input data
• Inline: called from another code, via a generic interface

• Used as a research tool by scientists at: CERFACS, ECMWF,
Météo-France, MetO�ce, NASA, NCAR, NOAA (JCSDA)

• Open-source CeCILL-C license, code available at:

https://github.com/benjaminmenetrier/bump
21

https://github.com/benjaminmenetrier/bump


Principles Grids Convolution Parallelization BUMP Conclusions

The BUMP software

BUMP : B matrix on an Unstructured Mesh Package

• Capabilities:
1. Covariance / correlation diagnostics

2. Localization functions diagnostics [Ménétrier et al., 2015]

3. Hybridization diagnostics [Ménétrier and Auligné, 2015]

4. Local correlation tensors diagnostics

5. Preparation and application of the NICAS method

• Object-oriented Fortran code ∼ 16.700 lines

• Two execution modes:
• O�ine : execution using a namelist and NetCDF input data
• Inline: called from another code, via a generic interface

• Used as a research tool by scientists at: CERFACS, ECMWF,
Météo-France, MetO�ce, NASA, NCAR, NOAA (JCSDA)

• Open-source CeCILL-C license, code available at:

https://github.com/benjaminmenetrier/bump
21

https://github.com/benjaminmenetrier/bump


Principles Grids Convolution Parallelization BUMP Conclusions

The BUMP software

BUMP : B matrix on an Unstructured Mesh Package

• Capabilities:
1. Covariance / correlation diagnostics

2. Localization functions diagnostics [Ménétrier et al., 2015]

3. Hybridization diagnostics [Ménétrier and Auligné, 2015]

4. Local correlation tensors diagnostics

5. Preparation and application of the NICAS method

• Object-oriented Fortran code ∼ 16.700 lines

• Two execution modes:
• O�ine : execution using a namelist and NetCDF input data
• Inline: called from another code, via a generic interface

• Used as a research tool by scientists at: CERFACS, ECMWF,
Météo-France, MetO�ce, NASA, NCAR, NOAA (JCSDA)

• Open-source CeCILL-C license, code available at:

https://github.com/benjaminmenetrier/bump
21

https://github.com/benjaminmenetrier/bump


Principles Grids Convolution Parallelization BUMP Conclusions

The BUMP software

BUMP : B matrix on an Unstructured Mesh Package

• Capabilities:
1. Covariance / correlation diagnostics

2. Localization functions diagnostics [Ménétrier et al., 2015]

3. Hybridization diagnostics [Ménétrier and Auligné, 2015]

4. Local correlation tensors diagnostics

5. Preparation and application of the NICAS method

• Object-oriented Fortran code ∼ 16.700 lines

• Two execution modes:
• O�ine : execution using a namelist and NetCDF input data
• Inline: called from another code, via a generic interface

• Used as a research tool by scientists at: CERFACS, ECMWF,
Météo-France, MetO�ce, NASA, NCAR, NOAA (JCSDA)

• Open-source CeCILL-C license, code available at:

https://github.com/benjaminmenetrier/bump
21

https://github.com/benjaminmenetrier/bump


Principles Grids Convolution Parallelization BUMP Conclusions

The BUMP software

BUMP : B matrix on an Unstructured Mesh Package

• Capabilities:
1. Covariance / correlation diagnostics

2. Localization functions diagnostics [Ménétrier et al., 2015]

3. Hybridization diagnostics [Ménétrier and Auligné, 2015]

4. Local correlation tensors diagnostics

5. Preparation and application of the NICAS method

• Object-oriented Fortran code ∼ 16.700 lines

• Two execution modes:
• O�ine : execution using a namelist and NetCDF input data
• Inline: called from another code, via a generic interface

• Used as a research tool by scientists at: CERFACS, ECMWF,
Météo-France, MetO�ce, NASA, NCAR, NOAA (JCSDA)

• Open-source CeCILL-C license, code available at:

https://github.com/benjaminmenetrier/bump
21

https://github.com/benjaminmenetrier/bump


Principles Grids Convolution Parallelization BUMP Conclusions

Outline

Principles

Subgrid de�nition

Convolution function

Parallelization

The BUMP software

Conclusions

22



Principles Grids Convolution Parallelization BUMP Conclusions

Conclusions

• A new implementation of localization for EnVar applications
has been developed: NICAS

• NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

• NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

• NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
su�cient (> 100).

• The open-source software BUMP implementing NICAS is
available online. It can be easily interfaced with other codes.

23



Principles Grids Convolution Parallelization BUMP Conclusions

Conclusions

• A new implementation of localization for EnVar applications
has been developed: NICAS

• NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

• NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

• NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
su�cient (> 100).

• The open-source software BUMP implementing NICAS is
available online. It can be easily interfaced with other codes.

23



Principles Grids Convolution Parallelization BUMP Conclusions

Conclusions

• A new implementation of localization for EnVar applications
has been developed: NICAS

• NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

• NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

• NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
su�cient (> 100).

• The open-source software BUMP implementing NICAS is
available online. It can be easily interfaced with other codes.

23



Principles Grids Convolution Parallelization BUMP Conclusions

Conclusions

• A new implementation of localization for EnVar applications
has been developed: NICAS

• NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

• NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

• NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
su�cient (> 100).

• The open-source software BUMP implementing NICAS is
available online. It can be easily interfaced with other codes.

23



Principles Grids Convolution Parallelization BUMP Conclusions

Conclusions

• A new implementation of localization for EnVar applications
has been developed: NICAS

• NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

• NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

• NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
su�cient (> 100).

• The open-source software BUMP implementing NICAS is
available online. It can be easily interfaced with other codes.

23



Principles Grids Convolution Parallelization BUMP Conclusions

Conclusions

• A new implementation of localization for EnVar applications
has been developed: NICAS

• NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

• NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

• NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
su�cient (> 100).

• The open-source software BUMP implementing NICAS is
available online. It can be easily interfaced with other codes.

Thank you for your attention

23



Principles Grids Convolution Parallelization BUMP Conclusions

Conclusions

• A new implementation of localization for EnVar applications
has been developed: NICAS

• NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

• NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

• NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
su�cient (> 100).

• The open-source software BUMP implementing NICAS is
available online. It can be easily interfaced with other codes.

Thank you for your attention

23



Principles Grids Convolution Parallelization BUMP Conclusions

Conclusions

• A new implementation of localization for EnVar applications
has been developed: NICAS

• NICAS is heterogeneous and can deal with complex
boundaries, yet it is exactly normalized

• NICAS speed is slightly sensitive to the subgrid resolution and
convolution length-scale.

• NICAS is as fast as the standard spectral method for
ARPEGE (T399, L105) if the number of MPI tasks is
su�cient (> 100).

• The open-source software BUMP implementing NICAS is
available online. It can be easily interfaced with other codes.

Thank you for your attention

23



Vertical grid de�nition

Levels are subsampled depending on the vertical convolution
length-scale:

Black dots: model levels - red dots: subgrid levels
24



Normalization computation

Normalization coe�cient:

N
ii
=
(
δT
i
SUsUsTSTδ

i

)−1/2
= ‖UsTSTδ

i
‖−1

where δ
i
is a Dirac vector (1 at point i , 0 elsewhere).

• Brute force computation: full computation of UsTSTδ
i
for

every model grid point i .
→ prohibitive cost ∼ O(n2)

• E�cient computation: exact determination of the subgrid
nodes involved in the computation of UsTSTδ

i
, allowing for a

fast computation (number of involved nodes � n
s).

→ a�ordable cost ∼ O(n)

25



Normalization computation

Normalization coe�cient:

N
ii
=
(
δT
i
SUsUsTSTδ

i

)−1/2
= ‖UsTSTδ

i
‖−1

where δ
i
is a Dirac vector (1 at point i , 0 elsewhere).

• Brute force computation: full computation of UsTSTδ
i
for

every model grid point i .
→ prohibitive cost ∼ O(n2)

• E�cient computation: exact determination of the subgrid
nodes involved in the computation of UsTSTδ

i
, allowing for a

fast computation (number of involved nodes � n
s).

→ a�ordable cost ∼ O(n)

25



Normalization computation

Normalization coe�cient:

N
ii
=
(
δT
i
SUsUsTSTδ

i

)−1/2
= ‖UsTSTδ

i
‖−1

where δ
i
is a Dirac vector (1 at point i , 0 elsewhere).

• Brute force computation: full computation of UsTSTδ
i
for

every model grid point i .
→ prohibitive cost ∼ O(n2)

• E�cient computation: exact determination of the subgrid
nodes involved in the computation of UsTSTδ

i
, allowing for a

fast computation (number of involved nodes � n
s).

→ a�ordable cost ∼ O(n)

25


	Principles
	1
	2
	3

	Subgrid definition
	1
	2

	Convolution function
	1
	2
	1
	3
	1

	Parallelization
	1
	1
	1

	The BUMP software
	1

	Conclusions
	1

	Appendix
	3
	1





