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Observing systems in the Subpolar North Atlantic

\

Figure: OSNAP array of the Overturning in the Subpolar North Atlantic Program
(http://www.o-snap.org)

OSNAP array:
@ Deployed in summer 2014

Nora Loose (University of Bergen) UQ for Observing System Design July 3,2018


http://www.o-snap.org

Observing systems in the Subpolar North Atlantic

Figure: OSNAP array of the Overturning in the Subpolar North Atlantic Program
(http://www.o-snap.org)

OSNAP array:
@ Deployed in summer 2014
@ Design based on dynamical considerations

Nora Loose (University of Bergen) UQ for Observing System Design July 3,2018


http://www.o-snap.org

Observing systems in the Subpolar North Atlantic

The OSNAP Array

Figure: OSNAP array of the Overturning in the Subpolar North Atlantic Program
(http://www.o-snap.org)

OSNAP array:
@ Deployed in summer 2014
@ Design based on dynamical considerations
@ Review in 2020

Nora Loose (University of Bergen) UQ for Observing System Design July 3,2018


http://www.o-snap.org

Observing systems in the Subpolar North Atlantic

The OSNAP Array

Figure: OSNAP array of the Overturning in the Subpolar North Atlantic Program
(http://www.o-snap.org)

OSNAP array:
@ Deployed in summer 2014
@ Design based on dynamical considerations
@ Review in 2020
@ Data redundancy?
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Adjoint sensitivities of OSNAP heat transport
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Adjoint sensitivities of OSNAP heat transport

Figure: Submarine melt in Greenland’s glacial
fjords [Straneo and Heimbach, 2013]

@ Measured quantities sensitive to remote forcing mechanisms and
large-scale ocean circulation features
@ Potential for constraining remote quantities of interest (Qols)?
@ e.g., Qol = subsurface temperature near Helheim Glacier
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Framework and Objectives

Inverse Modeling Framework (4D-Var): ECCO-V4 [Forget et al., 2015]

Final Goal:

Objectives:
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Framework and Objectives

Inverse Modeling Framework (4D-Var): ECCO-V4 [Forget et al., 2015]

@ MITgem at ~ 1° x 1° horizontal resolution, 50 vertical layers
@ solves for uncertain initial conditions, time-evolving boundary
conditions, parameters

Final Goal: To use Uncertainty Quantification (UQ) in Oceanographic
Inverse Problems to assess observation impact on Qols

Objectives:

@ To highlight the link between UQ and physical oceanography
@ To explore UQ in oceanographic inverse problems for simplified
observing systems
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Uncertainty Quantification in Inverse Problems

Nonlinear inverse/optimization problem (4D-Var): Minimize

T00 = 1~ HeO)T R (y° ~ HX) + (x—x)T B (x —x%)]

N~

weighted data-model misfit deviation from prior guess

+
Xmin control space
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{v;} constrained by OSNAP heat transport
measurements
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Constraints on Helheim subsurface temperature
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Constraints on Helheim subsurface temperature
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Conclusions and Outlook

@ Ocean dynamics are at the core of UQ (via adjoint sensitivities)
@ UQ analyzes redundancy and complementarity of data constraints
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Outlook for redesign of OSNAP: Compute low-
rank approximation via parallel randomized SVD
methods [Halko et al., 2011]
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Low-rank approximation of misfit Hessian

P=( H'R'H + B! )~

linearized (or Gauss-Newton) Hessian

Misfit Hessian Hpigtit = H" R 'H is of low rank:

M
Hmisit = B2 HTR"TH B2 =~ > " \viv]
i=1

Expression for posterior covariance:

<
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Projection of weighted adjoint sensitivities - DS
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