

Assimilation with faster super observation algorithm for meteorological 'Big Data'

T. Kurihana^{1, 2} (kurironaldo7@gmail.com) H.L. Tanaka¹

1. University of Tsukuba, Center for Computational Science 2. The University of Chicago Department of Computer Science (from this July)

INTRODUCTION

Recent Satellite Observation Data

- Newest generation of satellites have higher spatial and temporal resolution with richer amount of data size
- e. g. Himawari 8
- \rightarrow 3 times faster to observe in the world
- \rightarrow 50 times larger amount of data size

(Bessho et al. 2016)

Satellite Observation in Assimilation

- Thinning (Ochotta 2005) or Super-observation (SO; Lorenc 1981) are necessary to avoid correlation between each observation
- Himawari-8 infrared radiances all-sky assimilation case for Typhoon Soundelor used thinning (Honda et al. 2018)
- MetOp-A infrared radiance CO retrieval super-observation data was

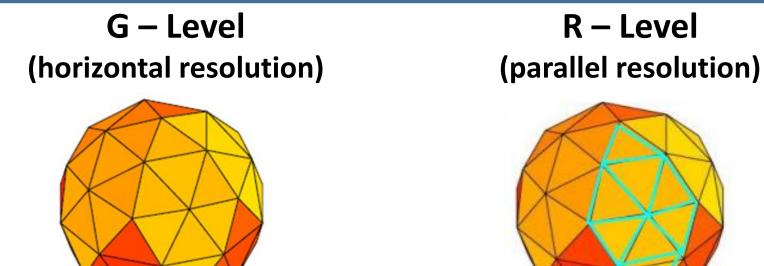
CHALLENGES

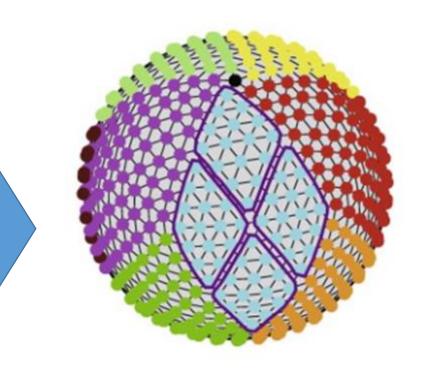
- Thinning or SO is still debatable
- Making SO takes a certain amount of computation resources (T. Kawabata and K. Okamoto Personal talk)

EXPERIMENT SETTINGS

Model: Nonhydrostatic ICosahedral Atmospheric Model

(NICAM; Satoh et al. 2007), version 14.3





assimilated (Klonecki et al. 2012)

MOTIVATION

- Develop faster SO system for the peculiar grid model (NICAM; Satoh et al. 2007) to increase computational efficiency
- Compare Thinning and SO assimilation cases, and examine the impact on the assimilation and forecast
- Investigate horizontal correlation distance in both cases

(Kodama et al. 2014)

Assimilation Method: LETKF (Hunt et al. 2007, Terasaki et al. 2015)

- > 00UTC 1st Nov. 2011 One time DA
- Resolution : Gl06-Rl01 (~112km), 38 layer
- > 10 Ensemble Members
- **Fixed RTPS** (Whitaker and Hamill 2012) Relaxation Parameter = 0.95
- Horizontal Localization is 400 km

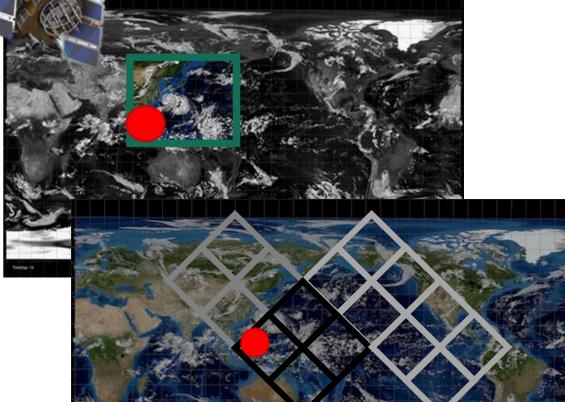
	0.000.000.000			
ers		SO - DA	Thin-DA	
	Prepbufr	SO	Thinng	
	AMSU-A	Thinning	Thinning	

Obs. Settings Table

ALGORITHM OF FASTER SO

□ Flow Chart of High Speed Super-observation (HSS)

Estimate potential R-grid(s) from lat-lon infomation



2. Compute a potential G-grid point from R-grid(s) in Step.1

* Code can be download My **Github** Account : Kuritaku

3. Set Look up table, and then compute distances among them

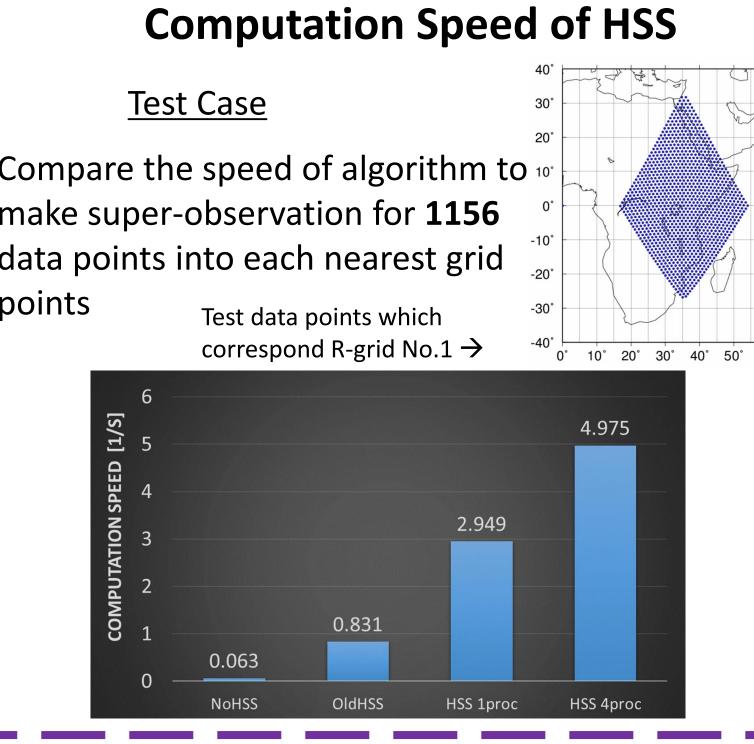
Next data is almost located

If searching failed

at the spatially near point

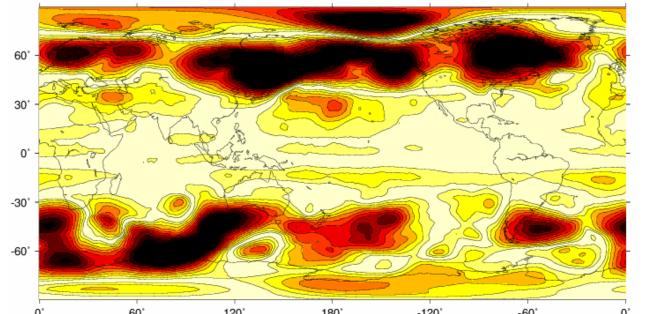
Result

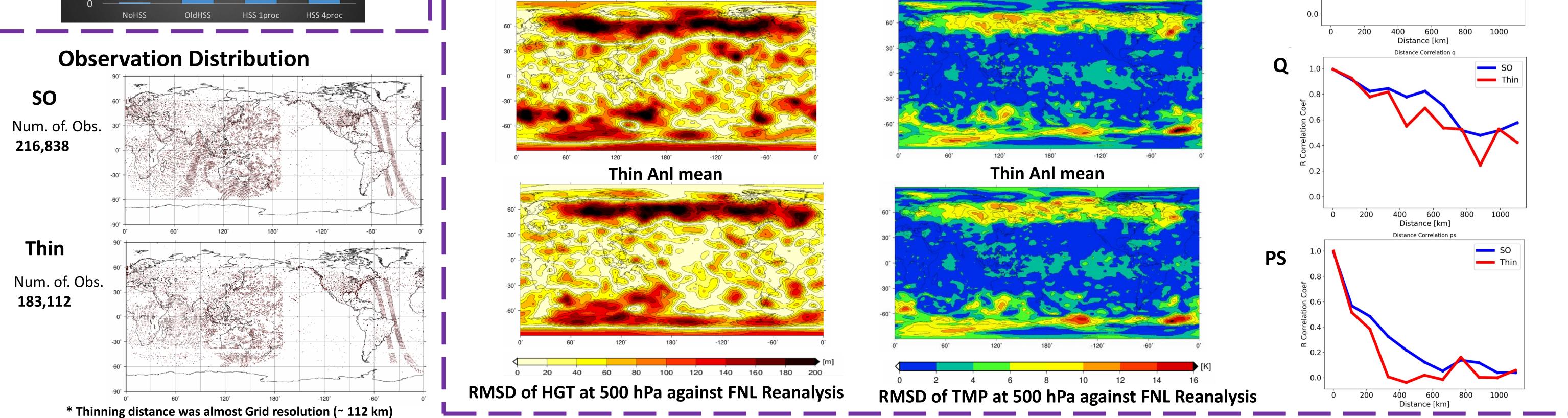
lon



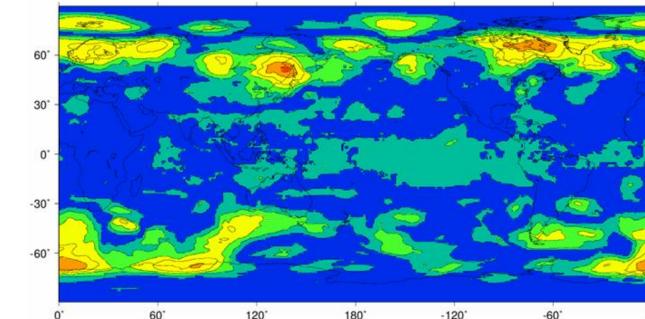
Observation Distribution SO

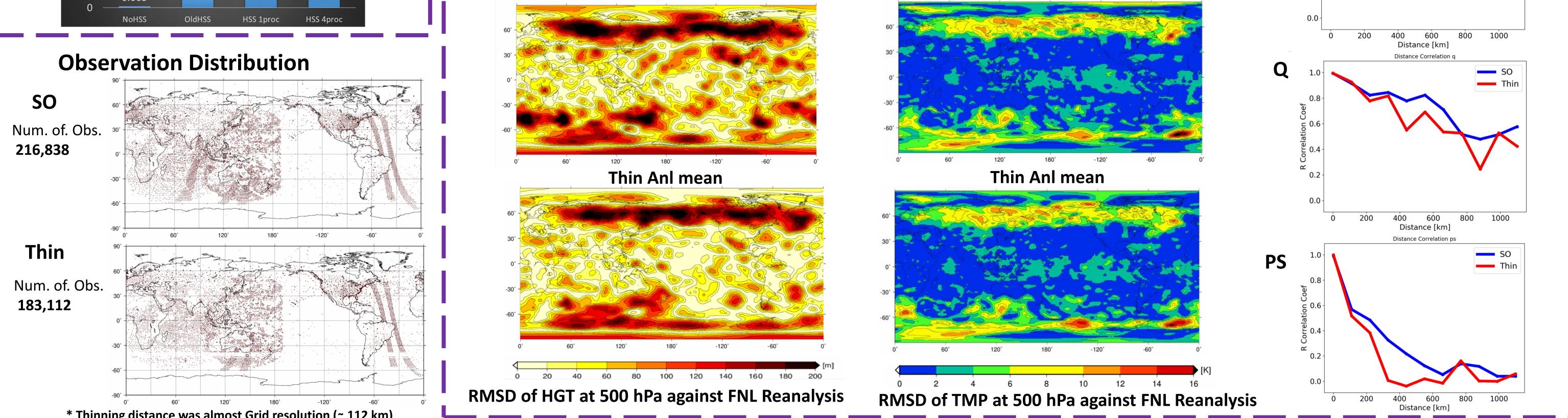
	Gues mean	Anl mean
SO North	103.2 m	104.6 m
South	78.1 m	81.8 m
Thin North	//	97.2 m
South	11	84.1 m



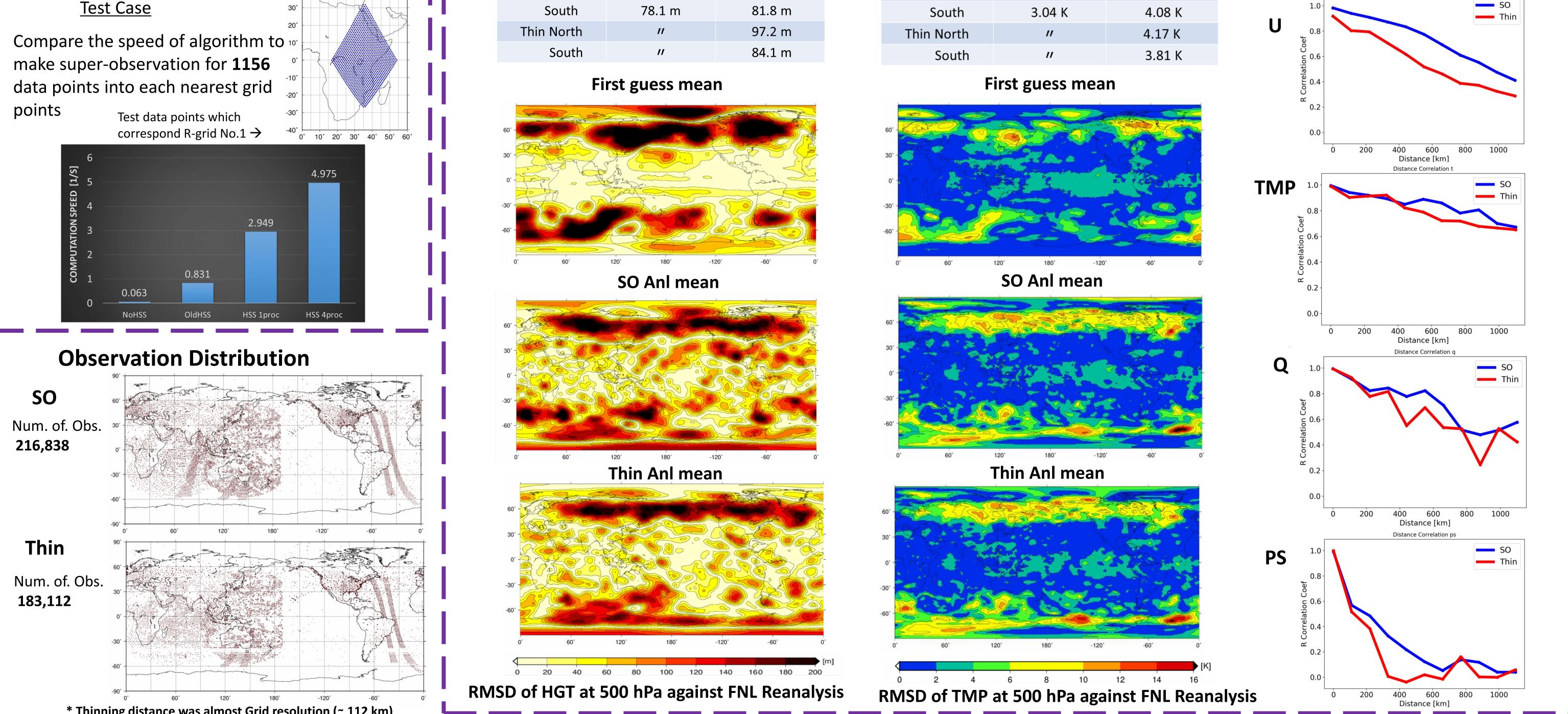


	Gues mean	Anl mean
SO North	3.45 K	3.97 K
South	3.04 K	4.08 K
Thin North	//	4.17 K
South	11	3.81 K





Horizontal Distance Correlation Distance Correlation



Discussion

- ✓ Thinning for DA is superior to that of SO. Is this same in the super-observation of AMSU-A ?
- ✓ Why does the analysis get worse result than first guess?
- Average computation in SO was simple mean. Does weighted average e.g., Gaussian interpolation more represent better ?

Acknowledgements

We are grateful to Dr. K. Kondo (JMA-MRI) for being a good consultant from both technical and academic sides , as well as Dr. K. Terasaki (RIKEN-CCS) for providing several experimental codes. We also thank Dr. S. Kotsuki (RIKEN-CCS), Dr. T. Kawabata and Dr. K. Okamoto (JMA-MRI) with regards to the helpful discussion and feedback about the super-observation system.

Reference

luction to Himawari-8/9 — Japan's new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151-183 similating all-sky Himawari-8 satellite infrared radiances: A Case of Typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213-219 unt, B. R., et al. 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D,230,112-126. (Innecki A et al. 2012: Assimilation of IASI satellite CO fields into a global chemistry transport model for validation against aircraft measurements. Atmos. Chem. Phys. 12, 4493–4512.

Ochotta, T., et al 2005 : Adaptive thinning of atmospheric observations in data assimilation with vector quantization and filtering methods. Quart. J. Ro Meteor. Soc., **131**. 3427-3437

Satoh, M., et al. 2007; Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations, J. of Comp. Phys., 227, 3486–3514. Terasaki, K., et al. 2015: Local ensemble transform Kalman filter experiments with the nonhydrostatic icosahedral atmospheric model NICAM. SOLA, 11, 23–26. Kodama, C., et al. 2014; Scalable rank-mapping algorithm for an icosahedral grid system on the massive parallel computer with a 3-D torus network. Parallel Computina, 40, 362–373 2008: 全球・領域気象予測モデルを用いた地球環境研究と将来予測. PACS-CSシンポジウム