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1. Adjoint and Ensemble FSO
FSO: Forecast Sensitivity to Observations

• !(#) = #&'#,    e: vector of forecast error
• Δ! = #)|+& '#)|+ − #)|-.& '#)|-.

≈ 01-2&
34+5

367
34)|+

8

34+5
9

3!
34)|+

8

(4:|;
< =4:|>?

< )/A

= 01-2& B& C& ' #)|+ + #)|-.

≈ 01-2& E
F-E

G-EH+5I)|+
8& ' #)|+ + #)|-.

3

Adjoint FSO (Langland and Baker 2004)

Ensemble FSO (Kalnay et al. 2012)
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2. FSOI inter-comparison project

(c.f. Rahul Mahajan’s talk this morning)

• Different global NWP centers computed FSOI 

data for the same period using the same 

error-norm metric.

• Data collected from

– GMAO, NRL, Met Office, JMA (adjoint)

– NCEP, JMA (ensemble)

• Note: JMA is the only center that provided

both adjoint and ensemble FSO.
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3. EFSO impact amplitude
deviates from adjoint FSO
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Courtesy of T. Auligné and R. Mahajan

• Adjoint FSO from different 
centers have comparative 
amplitudes, whereas

• NCEP (EMC)’s EFSO 
exhibits O(10) larger 
amplitude, and

• JMA’s EFSO exhibits 
~ 0.2 times smaller 
amplitude

• Why?NCEP



4. NCEP’s EFSO Overestimation problem:
Inconsistent use of K for mean update and covariance update

• Mean update:
– Compute Pa first, then compute δxa by Kd=PaHTR-1d
– No inflation applied to Pa

• Covariance (perturbation) update:
– Compute Pa, then applied posterior inflation (relaxation to 

prior)
à To correctly estimate obs impact (how each obs

improved ens mean), Xf has to be initialized from un-
inflated Xa .

• But the NCEP implementation of EFSO uses Xf initialized 
from inflated Xa (D. Groff., pers. comm.)
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5. JMA’s EFSO Underestimation problem:
Estimated and actual forecast error reduction

• EFSO successfully 
reproduces temporal 
variation of forecast 
error reductions 
(correlation coefficient 
as high as ~	0.8), but

• Only ~ 20 % of the 
amplitude explained by 
EFSO.
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6. A possible reason for impact underestimation 
(1/3)

• EFSO implemented for JMA’s LETKF 
underestimates forecast error reduction.

• Why?
• Bug?  à not found.
• Possible reason: forecast errors not well 

captured by the space spanned by the 
forecast perturbations
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• EFSO formulation: Δ"#$% ≈ '

($'
)*+$' , ∘ ./ 0#
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• In evaluating
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the portion of B3 that lies in the nullspace of @0#does not contribute to 
@0#

*
A3.

Namely:
• Let B3 = B3 CDEF + B3 FGHH, B3 CDEF ∈ span @0# , B3 FGHH ∈ null @0#

then

@0#
*
A3 = @0#

*
B3 CDEF + B3 FGHH = @0#

*
B3 CDEF

• N.B.:  This issue does not arise in adjoint FSO.
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6. A possible reason for impact underestimation 
(2/3)

A3@0#



• Does this hypothesis really explain the impact underestimation?
à Verify the hypothesis by performing the following diagnostics:
• For each model grid,

– Restrict all state vectors (mean and ptb) into localization volume 

– Decompose !" into !" #$%& and !" &'((.  (detail in the backup slide)

– Compute  the “explained fraction”   
!" )*+,

-

!" - .

– Compare this with the impact underestimation ∑ /01234- .
• If the two agrees, we conclude that the hypothesis is likely correct.
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6. A possible reason for impact underestimation 
(3/3)



Diagnosed “explained fraction” 
!" #$%&

'

!" '
Horizontal distribution
(near tropopause level)

• Fcst err well-captured by ensemble over 
the SH ocean, but not over the land.

à Perhaps related to observation density:
– Data-sparse area: analysis (verification) 

and forecast both close to model’s free-
run à "(|*+ similar to Bred Vector à
covered well by ,+

Vertical Profile
(global average)
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• Errors in moisture difficult to capture by 
the ensemble.

-+- Kinetic
-x- Dry
-*- Moist 

Very good agreement between
!" #$%&

'

!" ' and  ∑ ./0123' ! (both ~ 20%)



“ Explained fraction” increases 
when ens covariance is given higher weight 

• The 20 % “explained fraction” is obtained for
EFSO within hybrid 4D-Var (LETKF anl mean 
recentered to Var anl) where

Bhyb=0.23Bens+ 0.77Bclim

• We observed that “explained fraction” 
increases monotonically with ens cov weight.
– “Explained fraction” for pure (stand-alone) LETKF 

was as high as 67% 
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7. Conclusion
• EFSO is successfully implemented on JMA’s global DA 

system,
• but the total impact considerably underestimated.
• “Explaiend fraction” diagnostics has been proposed 

that decomposes fcst err into column- and null- spaces 
of the fcst ensemble !"

• The results suggests that significant portion of fcst err 
lies in the null-space of !",

• which exposes the lack of the ensemble size used at 
JMA (currently only 50).
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Questions? Suggestions?
Questions from me to you:
• Have I addressed localization correctly?
• What does my conclusion imply about validity 

of EFSO diagnostics?
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Hybrid 4DVar-LETKF DA developed in JMA
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Analysis resolution

(outer / inner)
TL959L100 (~20km, top:0.01hPa) /

TL319L100 (~55km, top:0.01hPa)

Assimilation 

window

6 hours (analysis time +/- 3 

hours)

Hybrid method
Extended control variable 

method (Lorenc 2003)

Weights on B βstat2 = 0.77, βens2 = 0.23

LETKF resolution TL319L100

Ensemble size 50

Localization scale 

(4DVar)

Horizontal: 800km

Vertical: 0.8 scale heights

Localization scale 

(LETKF)

Horizontal: 400km, Vertical: 0.4 

(0.8 for Ps) scale heights

Covariance 

inflation
Adaptive inflation (Miyoshi 2011)

Deterministic 
forecast

Ensemble forecast

Deterministic part Ensemble part

QC

4DVar

Ensemble mean

QC

EnKF (LETKF)

Observations

Perturbations

Next analysis

Ensemble analysis

Deterministic 
analysis

Recentering

Next analysis

Operational global DA at JMA is 4DVar (not hybrid)

ensensstatstat BBB 22 bb +=
Static (Climatological) 
background error covariance

Ensemble-based 
background error 
covariance

from Yoichiro Ota (2015, Adjoint Workshop)



EFSO implementation at JMA
• DA system: hybrid LETKF/4D-Var coupled with JMA GSM

– Resolution:  (outer) TL959L100 ; (inner and ensemble) T319L100
– Window: 6 hours (analysis time +/- 3 hours)
– B weights: 77% from static, 23% from ensemble
– Member size: 50
– Localization scales (e-folding): 

• LETKF:   Horizontal: 400km, Vertical: 0.4 scale heights
• 4D-Var: Horizontal: 800km, Vertical: 0.8 scale heights

– Covariance Inflation: Adaptive inflation of Miyoshi (2011)
– LETKF part initially coded by Dr. T. Miyoshi; maintained and updated by Y. Ota and T. Kadowaki.

• EFSO:
– Lead-times investigated: FT=0,6,12,24
– Localization scales: same as LEKTF

• advection: “moving localization scheme” of Ota et al.(2013) with scaling factor of  0.5 for horizontal wind.

– Verification: high-resolution analysis from 4D-Var
– Error norm: KE, Dry TE and Moist TE

• Period: Jul. 10, 2013, 06UTC – Jul. 15, 2013, 18UTC (5days, 20cases)
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by Yoichiro Ota (2015)



Decomposition of fcst error
into column- and null- spaces of fcst ptbs

• Fix	a	grid	and	consider	a	local	patch	that	would	be	used	if	an	observation	was	located	at	the	grid	point	in	
question.	In	the	derivation	below,	all	vectors/matrices	are	assumed	to	be	restricted	to	this	local	patch.

• In	EnKF, the sum of each column of => is	zero,	so	rank(=>)=D − 1:	span H=> =

span H=>
I
,⋯ , H=>

KLI
, H=>

K
= span H=>

I
,⋯ , H=>

KLI

In	light	of	this,	we	now	denote	by	H=> the	first	D − 1 columns	of	the	original	H=>.

• Now, suppose that NO ≔ Q
R
S(OT|V

> +OT|LX
> ) can	be	decomposed	as	

• NO = NO YZ[\ + NO \]^^, NO YZ[\ = ∑`ab
cLb de H=> `

= H=>f,

f = dI, ⋯ dKLI g

Multiplying NO = NO YZ[\ + NO \]^^ with QI/h=> g
=: H=>

gfrom left, NO \]^^ vanishes by definition , giving:

H=>
g
NO = H=>

g H=>f + NO \]^^ = H=>
gH=>f

∴ f = H=>
gH=>

LI
H=>

g
NO

• Once f is determined, we can obtain NO YZ[\
h and NO \]^^

h by

NO YZ[\
h
= H=>f

h
= H=>f

g H=>f = fgH=>
gH=>f = fgH=>

g
NO

NO \]^^
h = NO h − NO YZ[\

h


