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Accounting for correlated observations in variational DA

In variational DA, we aim to minimize the cost-function

J (x) =
1

2
‖x− xb‖2

B−1 +
1

2
‖H(x)− yo‖2

R−1

Using a diagonal approximation for R is often done for algorithmic
convenience but leads to a sub-optimal solution. Assumption
justified through thinning and variance inflation.

Work has been done to account for temporal correlations in surface
pressure data (Jarvinen et al. (1999)) and interchannel correlations
in satellite data (Bormann et al. (2010), Weston et al. (2014),
Stewart et al. (2013)).

But little work has been done to account for spatial correlations in
observation error.
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Accounting for correlated observation errors in VDA

Brankart et al. (2008) proposed a method to model the inverse of the
observation error correlation matrix based on the assimilation of the
successive derivatives of the observed field.

However, this method seems hard to generalize to heterogeneously
distributed data.

Fisher (2010) proposed interpolating the observations on a Cartesian
grid. Approach revisited by Michel (2017).

But getting access to R−1 is numerically costly.
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Spatial correlation operators

We introduce a new method to model spatial correlations, designed for
large data sets with a priori unknown spatial distribution.

Goal : Compute the product Rz for any z, without storing explicitly R in
memory.

Solution : Replace the computation of Rz with the solution of a
differential equation with initial condition z.

Continuous model (implicit diffusion) :

1

γc
(1− L2∆)mfm(z) = f0(z)

where γc is a normalization constant and L is a scale parameter.
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Discretization with FEM

Discretization using standard P1 finite elements :

(M + K)αn+1 = Mαn

where 0 ≤ n < m. M and K are called the mass matrix and the stiffness
matrix, respectively.
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Formulation of the correlation operators

The correlation operator is formulated
as the product of the diffusion operator
with the metric M−1 :

C = Γ[(M + K)−1M]mM−1Γ

where Γ contains normalization factors.
Inverting this equation leads to :

C−1 = Γ−1M[M−1(M + K)]mΓ−1

By including the standard deviation
matrices Σ, we get :

R = ΣCΣ and R−1 = Σ−1C−1Σ−1
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origin.
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Advantage of sparsity

Advantages of the finite element method :

The method is responsible for the sparsity of matrices M and K in
the linear system :

(M + K)αn+1 = Mαn

Boundary conditions are easy to implement.
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Varying resolutions
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What is a good mesh ? (Shewchuk, 2002)

In the finite element method, the error is bounded by the mesh
parameters :

‖u−uh‖H1(Ω) 6 Cαh
k‖u‖Hk+1(Ω)

∀τ h(τ)

ρ(τ)
6 α
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Impact of the quality of the mesh :

Large angles deteriorate the conditioning of the matrices due to
inaccurate representations of the gradients.

The mesh is also globally responsible for the stability of the computations.

Experiments on SEVIRI data Adjoint Workshop 2018 Oliver Guillet 9 / 14



Modelled correlation functions
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Limits of the approach
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Refinement strategies

Recall that the FEM quality depends on the ratio h(τ)
ρ(τ) .

This ratio can be improved through local mesh refinement.

Several strategies are possible (reduction, bisection).
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Summary

R is not stored explicitly. Instead, it is represented as an operator.

It is built from the implicit diffusion equation and a finite element
discretization to allow treatments on unstructured grids.

R−1 is easy to access.

The amplitude of the correlation functions is equal to 1 almost
everywhere.

When the elements are ill-shaped, refining the mesh improves the
accuracy of R, at the expense of complicating R−1.

Guillet et at. (2018) to be submitted to QJRMS.
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Link with Brankart’s method

Consider the generalized diffusion equation :

(α0I − α1∆1 + . . .+ (−1)mαm∆m)um = u0

Its finite element discretization leads to (normalization factors are
omitted) :

C−1 = M[α0I + α1M−1K + . . .+ αm(M−1K)m]

For instance, take m = 2 :

C−1 =
[

M
1
2 K

1
2 KM− 1

2

]
︸ ︷︷ ︸

T∗

 α0I
α1I

α2I


︸ ︷︷ ︸

(R+)−1

 M
1
2

K
1
2

M− 1
2 K


︸ ︷︷ ︸

T

0th order derivative
1st order derivative
2th order derivative

Here, it can now adapt to any kind of spatial distribution of the data.
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