

Modelling spatial observation error correlations using a diffusion operator on unstructured grids

Oliver Guillet

CERFACS / Météo France - CNRM

July 2018

Co-authors : S. Gratton^a, S. Gurol^b, Y. Michel^c X. Vasseur^d, A. Weaver^b ^a INPT-IRIT, Toulouse, France ^b CERFACS, Toulouse, France ^c METEO-FRANCE, Toulouse, France ^d ISAE-SUPAERO, Toulouse, France

Adjoint Workshop 2018

1 / 14

Accounting for correlated observations in variational DA

• In variational DA, we aim to minimize the cost-function

$$\mathcal{J}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{x}^b\|_{\mathbf{B}^{-1}}^2 + \frac{1}{2} \|\mathcal{H}(\mathbf{x}) - \mathbf{y}^o\|_{\mathbf{R}^{-1}}^2$$

- Using a diagonal approximation for **R** is often done for algorithmic convenience but leads to a **sub-optimal solution**. Assumption justified through thinning and variance inflation.
- Work has been done to account for **temporal correlations** in surface pressure data (Jarvinen et al. (1999)) and **interchannel correlations** in satellite data (Bormann et al. (2010), Weston et al. (2014), Stewart et al. (2013)).
- But little work has been done to account for **spatial correlations** in observation error.

- Brankart et al. (2008) proposed a method to model the inverse of the observation error correlation matrix based on the assimilation of the **successive derivatives** of the observed field.
- However, this method seems hard to generalize to **heterogeneously** distributed data.
- Fisher (2010) proposed interpolating the observations on a Cartesian grid. Approach revisited by Michel (2017).
- But getting access to R^{-1} is **numerically costly**.

3 / 14

We introduce a new method to model spatial correlations, designed for **large data sets** with a priori **unknown spatial distribution**.

Goal : Compute the product ${\bf R} {\bf z}$ for any ${\bf z},$ without storing explicitly ${\bf R}$ in memory.

Solution : Replace the computation of Rz with the solution of a differential equation with initial condition z.

Continuous model (implicit diffusion) :

$$\frac{1}{\gamma_c}(1-L^2\Delta)^m f_m(\mathbf{z}) = f_0(\mathbf{z})$$

where γ_c is a normalization constant and L is a scale parameter.

Discretization with FEM

Discretization using standard P_1 finite elements :

$$(\mathbf{M} + \mathbf{K})\alpha_{n+1} = \mathbf{M}\alpha_n$$

where $0 \le n < m$. **M** and **K** are called the mass matrix and the stiffness matrix, respectively.

The correlation operator is formulated as the product of the diffusion operator with the metric \mathbf{M}^{-1} :

$$\mathbf{C} = \mathbf{\Gamma}[(\mathbf{M} + \mathbf{K})^{-1}\mathbf{M}]^m\mathbf{M}^{-1}\mathbf{\Gamma}$$

where Γ contains normalization factors. Inverting this equation leads to :

$$\mathbf{C}^{-1} = \mathbf{\Gamma}^{-1} \mathbf{M} [\mathbf{M}^{-1} (\mathbf{M} + \mathbf{K})]^m \mathbf{\Gamma}^{-1}$$

By including the standard deviation matrices $\pmb{\Sigma},$ we get :

$$\textbf{R} = \boldsymbol{\Sigma} \textbf{C} \boldsymbol{\Sigma}$$
 and $\textbf{R}^{-1} = \boldsymbol{\Sigma}^{-1} \textbf{C}^{-1} \boldsymbol{\Sigma}^{-1}$

Expected response to a Dirac impulse on a Cartesian mesh. Amplitude should be 1 at the origin.

Advantage of sparsity

Advantages of the finite element method :

• The method is responsible for **the sparsity of matrices M and K** in the linear system :

$$(\mathbf{M} + \mathbf{K})\alpha_{n+1} = \mathbf{M}\alpha_n$$

Boundary conditions are easy to implement.

Left : profile of **M**. Right : profile of \mathbf{R}^{-1}

Diffusion with FEM

Varying resolutions

Adjoint Workshop 2018

∃ →

8 / 14

What is a good mesh? (Shewchuk, 2002)

In the finite element method, the error is bounded by the mesh parameters :

Impact of the quality of the mesh :

Large angles deteriorate the conditioning of the matrices due to inaccurate representations of the gradients.

The mesh is also globally responsible for the stability of the computations.

Modelled correlation functions

Unitary response to several Dirac impulses.

Experiments on SEVIRI data

Adjoint Workshop 2018

Limits of the approach

Left : Amplitude error at each location. Right : circumradius index.

- Recall that the FEM quality depends on the ratio $\frac{h(\tau)}{\rho(\tau)}$.
- This ratio can be improved through local mesh refinement.
- Several strategies are possible (reduction, bisection).

- $\bullet~\mathbf{R}$ is not stored explicitly. Instead, it is represented as an operator.
- It is built from the implicit diffusion equation and a finite element discretization to allow treatments on unstructured grids.
- \mathbf{R}^{-1} is easy to access.
- The amplitude of the correlation functions is equal to 1 almost everywhere.
- When the elements are ill-shaped, refining the mesh improves the accuracy of **R**, at the expense of complicating \mathbf{R}^{-1} .
- Guillet et at. (2018) to be submitted to QJRMS.

Link with Brankart's method

• Consider the generalized diffusion equation :

$$(\alpha_0 I - \alpha_1 \Delta^1 + \ldots + (-1)^m \alpha_m \Delta^m) u^m = u^0$$

• Its finite element discretization leads to (normalization factors are omitted) :

$$\mathbf{C}^{-1} = \mathbf{M}[\alpha_0 \mathbf{I} + \alpha_1 \mathbf{M}^{-1} \mathbf{K} + \ldots + \alpha_m (\mathbf{M}^{-1} \mathbf{K})^m]$$

• For instance, take
$$m = 2$$
 :

$$\mathbf{C}^{-1} = \underbrace{\begin{bmatrix} \mathbf{M}^{\frac{1}{2}} & \mathbf{K}^{\frac{1}{2}} & \mathbf{K}\mathbf{M}^{-\frac{1}{2}} \end{bmatrix}}_{\mathbf{T}^{*}} \underbrace{\begin{bmatrix} \alpha_{0}\mathbf{I} \\ \alpha_{1}\mathbf{I} \\ \alpha_{2}\mathbf{I} \end{bmatrix}}_{(\mathbf{R}^{+})^{-1}} \underbrace{\begin{bmatrix} \mathbf{M}^{\frac{1}{2}} \\ \mathbf{K}^{\frac{1}{2}} \\ \mathbf{M}^{-\frac{1}{2}}\mathbf{K} \end{bmatrix}}_{\mathbf{T}^{t}} \underbrace{\begin{bmatrix} \mathbf{M}^{t} \\ \mathbf{M}^{t} \\ \mathbf{M}^{t} \\ \mathbf{M}^{t} \end{bmatrix}}_{\mathbf{T}^{t}} \underbrace{\begin{bmatrix} \mathbf{M}^{t} \\ \mathbf{M}^{t} \\ \mathbf{M}^{t} \\ \mathbf{M}^{t} \end{bmatrix}}_{\mathbf{T}^{t}} \underbrace{\begin{bmatrix} \mathbf{M}^{t} \\ \mathbf{M}^{t} \\ \mathbf{M}^{t} \\ \mathbf{M}^{t} \end{bmatrix}}_{\mathbf{T}^{t}} \underbrace{\begin{bmatrix} \mathbf{M}^{t} \\ \mathbf{M}^{t} \\ \mathbf{M}^{t} \\ \mathbf{M}^{t} \end{bmatrix}}_{\mathbf{T}^{t}} \underbrace{\begin{bmatrix} \mathbf{M}^{t} \\ \mathbf{M}^{t} \\ \mathbf{M}^{t} \\ \mathbf{M}^{t} \\ \mathbf{M}^{t} \end{bmatrix}}_{\mathbf{T}^{t}} \underbrace{\begin{bmatrix} \mathbf{M}^{t} \\ \mathbf{M}^{t$$

• Here, it can now adapt to any kind of spatial distribution of the data.