

Comparing the adjoint- and ensemble-based approaches to observation impact on short-range forecasts

Fábio L. R. Diniz* and Ricardo Todling

Global Modeling and Assimilation Office NASA

Workshop on Sensitivity Analysis and Data Assimilation in Meteorology and Oceanography Meliá Ria Hotel, Aveiro, Portugal July $1^{\rm st}$ – $6^{\rm th}$, 2018

*Centro de Previsão de Tempo e Estudos Climáticos, Cachoeira Paulista, SP, Brazil Thanks to D. Groff (NCEP) for pointing to Ota's EFSOI upgrade to Whitaker's EnKF.

Outline

Introduction

Recap of FSOI Basics

Preliminary Results

Closing Remarks

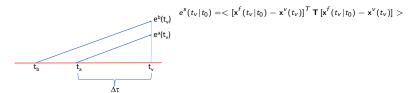
FSOI at GMAO: from Adjoint- to Ensemble-based?

Evolution of Forecast Sensitivity and Observation Impact (FSOI) at GMAO:

- GMAO has been calculating FSOI in its Forward Processing (FP) system for several years.
- FP has evolved from 3dVar to Hybrid-3dVar to what is presently Hybrid-4dEnVar.
- Our strategy follows the Langland & Baker (2004) approach and relies on the availability of an adjoint model.
- Along the years the GMAO forward model has gone from FV to FV³; accordingly, the adjoint model has gone from AD-FV to AD-FV³.
- Linearized physics, and corresponding adjoint, has evolved from simple diffusion and vertical drag to more elaborate accountability of convection (Holdaway, Errico, Gelaro & Kim).

Ensemble DA opens the door to bypass the Adjoint Model:

- In a dual-analysis system (Var & Ens) the possibility exists to base FSOI fully on the ensemble - this has its caveats (see what follows).
- Alternatively:
- Method I The AD-Var-analysis can be adapted to make use of an ensemble forecast to implicitly estimate forecast sensitivities;
- Method II Or, similarly, but not identically, the ensemble might be used to explicitly estimate forecast sensitivities required by the AD-Var-analysis.


This presentation provides insights from preliminary evaluation of these possibilities.

Error reduction measure and FSOI

Forecast error:

The impact of observations is typically evaluated by studying how the error measure above changes as a consequence of assimilating observations. Whether based on $\frac{\text{adjoint}}{\text{or ensemble}}$ techniques, these methods require evaluation of expressions of the form:

$$\delta e \, pprox < \mathbf{d}^T \mathbf{K}^T \mathbf{g}_0 >$$

with d and K being the background residual vector and the analysis gain matrix, and g amounting to a forecast sensitivity vector whose approximation leads to all kinds of formula.

	AD-Solver (K ')	Forecast Sensitivity (\mathbf{g}_0)	This Talk
VA-FSOI	Var	ADM	done
EE-FSOI	En	En	done
VE-FSOI	Var	En	done
EA-FSOI	En	ADM	_

VA-FSOI vs EE-FSOI in a Dual-Analysis Hybrid System

Adjoint- and Ensemble-based FSOI

Variational-Adjoint-FSOI (VA-FSOI)

Second-order Approximation (Trapezoidal rule; Langland & Baker 2004; Tellus):

$$\mathbf{g}_{0}^{A} \equiv \frac{1}{2}(\mathbf{M}_{a}^{T}\mathbf{T}\mathbf{e}^{a} + \mathbf{M}_{b}^{T}\mathbf{T}\mathbf{e}^{b}).$$

And in a system such as GSI, the calculation of δe can be done as in:

$$\delta e \approx < \mathbf{d}^T \mathbf{R}^{-1} \mathbf{H} \tilde{\mathbf{g}} >,$$

where $\tilde{\mathbf{g}}$ is derived from the GSI-hybrid solver as in (double-CG or Bi-CG):

$$(B + BH^TR^{-1}HB)z = Bg_0^A$$

 $\tilde{g} = Bz$

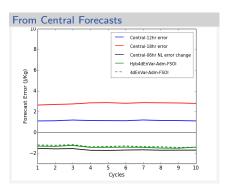
for
$$\mathbf{B} = \beta_c \mathbf{B}_c + \beta_e \mathbf{B}_e$$
.

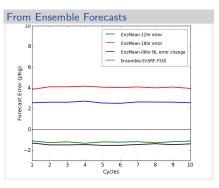
Ensemble-Ensemble-FSOI (EE-FSOI)

In Ensemble systems, the gradient is defined with respect to the ensemble mean:

$$\mathbf{g}_0^E \equiv \frac{1}{2} \mathbf{X}_a^{fT} \mathbf{T} (\bar{\mathbf{e}}^a + \bar{\mathbf{e}}^b),$$

where $\mathbf{X}_{a}^{f} \equiv \mathbf{X}^{f}(t_{v}|t_{a})$ is a matrix created from the ensemble perturbation of forecasts issued from t_{a} and valid at t_{v} , and the over-bar represents ensemble average.


And in a system such as the EnSRF, calculation of δe amount to:

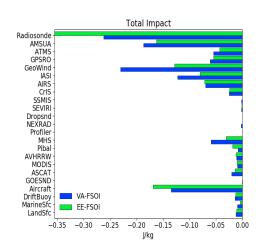

$$\delta e pprox rac{1}{2} < \mathbf{d}^\mathsf{T} \mathbf{R}^{-1} \mathbf{H} \left(\mathbf{L} ullet \mathbf{X}^a \mathbf{X}^{fT} \right) \mathbf{T} (\bar{\mathbf{e}}^a + \bar{\mathbf{e}}^b) >,$$

where $\mathbf{X}_a \equiv \mathbf{X}_a(t_a)$ is a matrix formed from ensemble analysis perturbations (Kalnay et~al., 2012, Tellus; Ota et~al., 2013, Tellus). An argument has been made to have \mathbf{L} above as an advected form of the \mathbf{L} used in the forward ensemble analysis.

VA-FSOI vs EE-FSOI

- ▶ Error reductions are similar between central and ensemble forecasts, thought latter is slightly smaller in absolute value for 12-hour forecasts.
- ▶ Left: compares FSOI when backward Var changed from Hyb-4dEnVar to 4dEnVar.
- ► Right: presents EE-FSOI.

VA-FSOI vs EE-FSOI

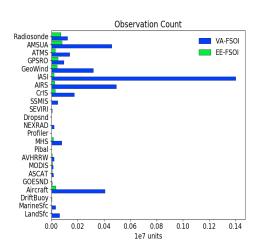

NASA

Total Impact

- ➤ To render a fair comparison, we calculate Adjoint-based impacts for a changed Adjoint analysis integration where the climatological term is shut off, thus converting the backward run into a 4dEnVar instead of its default (FP-like) Hybrid-4dEnVar.
- At first glance, impact rankings are similar.
- Closer examination reveals considerable differences (e.g., radiosondes and satellite winds).
- Differences are also non-negligible for MW and IR satellite radiances (AMSU-A, ATMS, IASI).

Overall this comparison reflects that:

- Ensemble mean forecasts are unrelated to the central forecast.
- But more importantly, the ensemble analysis handles observations largely differently to how the hybrid analysis does.


VA-FSOI vs EE-FSOI

NASA

Observation Counts

- The difference in treatment of observations between ensemble and central analyses is evidenced in the observation count.
- The GSI and EnSRF solvers have considerably different convergence criteria.
- Even with the ideal DFS-based criterium (chosen here), the EnSRF ignores a very large percentage of the observations.

All-in-all we don't think observation impacts derived from the En-SRF solver represent well how the deterministic (central) analysis system uses observations.

VA-FSOI vs VE-FSOI in a Dual-Analysis Hybrid System

VA-FSOL vs VF-FSOL

Variational-Ensemble-FSOI (VE-FSOI) Method I

As in Buehner et al. (2018, MWR), in a EnVar, such that $B=B_{\rm e}$, the ensemble background covariance allows for the following to be written

$$\mathbf{B}_{e}\mathbf{g}_{0}^{A} = \mathbf{L} \bullet \mathbf{X}_{b}(\mathbf{X}_{b})^{T}\mathbf{g}_{0}^{A}$$

$$\approx \mathbf{L} \bullet \mathbf{X}_{b}\mathbf{X}_{a}^{T}\mathbf{M}^{T}(t_{a}, t_{b})\mathbf{g}_{0}^{A}$$

We can replace \mathbf{g}_0^A with \mathbf{g}_0^E (using central forecast errors) in the RHS to get

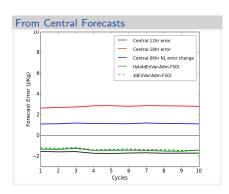
$$\begin{aligned} \mathbf{B}_{e}\mathbf{g}_{0}^{A} & \approx & \mathbf{B}_{e}\mathbf{g}_{0}^{E} \\ & \approx & \frac{1}{2}\mathbf{L} \bullet \mathbf{X}_{b}\mathbf{X}_{a}^{T}\mathbf{M}^{T}(t_{a},t_{b})\mathbf{X}_{a}^{fT}\mathbf{T}(\mathbf{e}^{a}+\mathbf{e}^{b}) \\ & = & \frac{1}{2}\mathbf{L} \bullet \mathbf{X}_{b}\mathbf{X}_{b}^{fT}\mathbf{T}(\mathbf{e}^{a}+\mathbf{e}^{b}) \end{aligned}$$

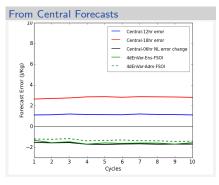
which amounts to a simple change to the RHS of the minimization problem solved for calculation of observation impacts in the Var system. Note: $\mathbf{e}^{a}(\mathbf{e}^{b})$ replaces $\mathbf{\bar{e}}^{a}(\mathbf{\bar{e}}^{b})$

Variational-Ensemble-FSOI (VE-FSOI) Method II

Alternatively, we can try to use the approach of Ancell & Hakim (2007; MWR) to estimate forecast sensitivities using an ensemble of forecasts.

In this case, the forecast sensitivity is estimated as in: $\begin{bmatrix} T_1 & T_2 & T_3 \end{bmatrix}$


$$\frac{\partial f}{\partial \mathbf{x}} = \mathbf{D}^{-1} \begin{bmatrix} \frac{\delta \mathbf{x}_1 \delta \mathbf{e}_1'}{\delta \mathbf{x}_2 \delta \mathbf{e}_2'} \\ \vdots \\ \delta \mathbf{x}_n \delta \mathbf{e}_n^T \end{bmatrix}$$

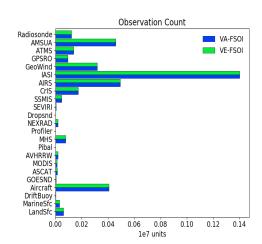

where $\mathbf{D} = diag(||\delta \mathbf{x}_1||^2, ||\delta \mathbf{x}_2||^2, \cdots, ||\delta \mathbf{x}_n||^2)$, $dim(\mathbf{x}_i) = dim(\mathbf{e}_i) = M \times 1$, and n is the state-space dimension.

This presentation will not present results for Method II.

VA-FSOI vs VE-FSOI Method I

- Lack of advection of localization scales in the RHS of the Var impact expression motivates following Buehner *et al.* (2018; MWR) and evaluating 12-hr instead of 24-hr FSOI.
- ▶ Left: compares FSOI when backward Var changed from Hyb-4dEnVar to 4dEnVar.
- ▶ Right: compares VA-FSOI with VE-FSOI Method I.

Remark: 32-member ensemble perturbations seem rather reasonable replacement for ADM for 12-hr sensitivity calculation in 4dEnVar context.

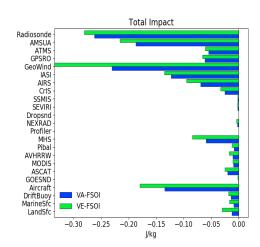


VA-FSOI vs VE-FSOI Method I

NASA

Observation Counts

- The two approaches treat the observations in exactly the same way, and fully consistent with how the forward (Hyb-4dEnVar) solver treats them.
- Replacing the Adjoint Model with Ensemble perturbations to estimate forecast sensitivities leaves the analysis solver untouched wrt each other.
- The figure on the right shows observation counts between the VA-FSOI and VE-FSOI Method I techniques, for backward integrations of 4dEnVar, covering a 10-day period.



VA-FSOI vs VE-FSOI Method I

NASA

Total Impact

- Overall, impacts don't seem to change much and are largely comparable when ADM is replaced with Ensemble perturbations.
- Closer look reveals satellite winds (GeoWind), MW sensors (MHS, AMSU-A), aircrafts and near surface observations to have larger impact when Ens-Perts are used compared to when ADM is used to estimate forecast sensitivity.
- The above seems to be consistent with the fact that the simply parameterized adjoint physics is expected to mis-represent water and near surface fields as compared to the full GCM.

Closing Remarks

- More importantly, though the observation operators in the hybrid GSI and EnSRF are shared, GSI and EnSRF treat observations rather differently.
- ▶ In a dual hybrid DA system, when a (low resolution) ensemble analysis filter is used to provide flow dependence to a (high resolution) hybrid analysis, certain configurations of the ensemble filter might discourage assessing observation impact using the EE-FSOI based on the EnDA part of system.
- ► The comment above applies particularly to GSI-EnSRF-based systems.
- As in Buehner *et al.*, we have shown that it is possible to enable the Var system to derive observation impacts with forecast sensitivities calculated from the ensemble thus avoiding the adjoint model.

