Simulating idealised satellite radiance observations

L. Cantarello⁽¹⁾, O. Bokhove⁽¹⁾, S. Tobias⁽¹⁾, G. Inverarity⁽²⁾, S. Migliorini⁽²⁾

(1) University of Leeds, School of Mathematics, Leeds, United Kingdom; (2) Met Office, Exeter, United Kingdom Author's email: mmlca@leeds.ac.uk

OBJECTIVE: including simulated satellite radiance observations within a Data Assimilation scheme based on an idealised model for convection to facilitate future research

1. Introduction

An idealised model for convection developed at the University of Leeds and suitable for Data Assimilation research^[1,2] will be used for **satellite Data Assimilation** (DA) research. A new idealised **observation operator** has been developed in order to assimilate simulated **satellite** radiance observations. An investigation of satellite radiance DA at different scales will be performed at a later stage of the project.

2. The idealised model for convection^[1,2]

 $\partial_t h + \partial_x (hu) = 0$

Suitable for DA research:

4. Simulated radiance observations

Satellite observations (emitted radiance)

Model variables (surface height)

From radiance to brightness temperature at ground, Rayleigh-Jeans' law:

$$B(\lambda,T) = 2\frac{k_B c}{\lambda^4}T;$$

From brightness temperature at ground to surface height, an ideal gas in hydrostatic equilibrium:

References:

[1] Kent, T. (2016): An idealised fluid model of convective-scale NWP: dynamics and data assimilation. PhD Thesis, University of Leeds.

[2] Kent, T., Bokhove, O., Tobias, S.M. (2017): Dynamics of an idealized fluid model for investigating convective-scale data assimilation. Tellus A: Dynamic Meteorology and Oceanography, 69(1), 1369332.

