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4. Numerical Results

Resolved State Evolution

Figure 1: The evolution of the resolved state analysis on a typical run for 

the three filters compared to the truth trajectory.

 The mean-square-errors of the OKF, SKF and RKF are1.0528, 1.1142

and 8.5977 respectively.

 The OKF has only slightly less error than the SKF despite the extra 

computational expense.

 The RKF has a large error as it doesn’t account for the unresolved 

scales.

Resolved State Variance

Figure 2: The evolution of the resolved state variance for the three 

filters.

 The variance of the OKF and SKF are in agreement with their mean-

square-errors.

 The RKF’s variance is in disagreement with its mean-square-error as 

the unresolved paraeters aren’t correctly accounted for.

5. Conclusion

The SKF is a suboptimal filter which sacrifices estimation performance 

for computational performance. We can also see that the SKF can 

account for unresolved scales error. Future plans for testing this filter 

include comparisons with other methods of accounting for unresolved 

scales error and using approximations for unknown parameters within 

an atmospheric context.
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1. Introduction

In atmospheric data assimilation, observations of the atmospheric state 

will include scales of motion unable to be resolved by numerical models 

assimilating these observations. The resulting error caused by this scale-

mismatch is called the error due to unresolved scales and is a 

component of the representation error. The standard approach to 

dealing with this error is to include it as part of the observation 

weighting matrix. However, other approaches exist which take explicit 

account of resolved and unresolved scales such as the Schmidt-Kalman

Filter (Janjić and Cohn, 2006).

2. Aims

The aim of this poster is to demonstrate the Schmidt-Kalman Filter’s 

(SKF) ability to compensate for error due to unresolved scales.  It 

does this through:

• Use of correct initial forecast error covariance 𝑷0
𝑓

, observation error 

covariance 𝑹, model error covariance 𝑸, forecast model 𝑭 and 

observation operator 𝑯.

• Disregarding the unresolved state values to reduce computations.

• Accounting for state and time dependence of the representation 

error.

The filters we will compare the SKF to are:

1. The Optimal Kalman Filter (OKF).  This filter uses all correct 

parameters and evolves the resolved and unresolved states. 

2. The Reduced-Order Kalman Filter (RKF). This filter uses only the red 

parameter elements displayed below. It is essentially a Kalman Filter 

for the resolved state only and represents how Kalman Filters are 

currently applied.

3. A Simple Example

Our model is a simple two variable dynamical system with one variable 

each for the resolved and unresolved scales while. Both processes will 

be Gaussian random walks with the unresolved state having a 

contribution from the resolved scales. The initial conditions for the 

states are chosen so the  resolved state is an order of magnitude larger 

than the unresolved state. 

The model parameters are (Brown et al., 2012)

𝑭 =
1 0

0.05 𝑒−1/2
, 𝑷0

𝑓
=

1 0
0 1

, 𝑸 =
1 0
0 𝑒−1

,

𝑯 = 1 1 , 𝑹 = 1.
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