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(57) ABSTRACT

Autonomous navigation cyber-attack detection and/or
avoidance techniques include visual and inertial odometry
(VIO) algorithms to provide a root-of-trust during naviga-
tion, VIO algorithms that cross-validate navigation param-
eters using IMU and visual data, and hardware-dependent
attack survival mechanisms that support autonomous sys-
tems during an attack.
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ATTACK DETECTION AND
COUNTERMEASURES FOR AUTONOMOUS

NAVIGATION

FIELD OF THE INVENTION

[0001] This invention relates to autonomous driving sys-
tems.

SUMMARY OF THE INVENTION

[0002] The present invention addresses the problem in
which a cyber-attack targets/corrupts sensor data (for
example, from a GPS/IMU sensor and camera) of an autono-
mous vehicle navigation system, thereby influencing the
control algorithm and/or making real-time map, localization,
or navigation data unavailable to the autonomous entity.
Two solutions are presented: Replay-Attack Detection
Using Pose Validation and GPS Spoofing Detection Using
Visual Odometry, both optionally augmented with root-of-
trust hardware.
[0003] It is specifically noted that every combination and
sub-combination of the above-listed and below-described
features and embodiments is considered to be part of the
invention.

BRIEF DESCRIPTION OF DRAWINGS

[0004] The foregoing summary, as well as the following
detailed description of the preferred invention, will be better
understood when read in conjunction with the appended
drawings. For the purpose of illustrating the invention, there
are shown in the drawings embodiments which are presently
preferred. It should be understood, however, that the inven-
tion is not limited to the precise arrangements and instru-
mentalities shown. In the drawings:
[0005] FIGS. 1A-1C show an example of replay attack on
stereo visual odometry. FIG. 1A shows flow matching for
stereo-visual odometry on the KITTI data-set. A. Geiger, P.
Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The
KITTI dataset," International Journal of Robotics Research
(IJRR), 2013. FIG. 1B shows feature selection. FIG. 1C
shows a replay attack on the camera inputs that affects the
stereo visual odometry (VO).
[0006] FIG. 2: Attack detection using a shallow closed-
loop neural network. The inertial measurement unit (IMU)
pose is represented by the variable x, and the VO-estimated
pose is represented by y. Any attack that corrupts the y(t)
will force the error of a trained model to jump as shown in
FIGS. 3A and 3B.
[0007] FIG. 3A shows an example of replay attack detec-
tion in which the closed loop network predicts the VO pose
using the IMU data and updates itself based on the VO pose.
The VO measurements have the frequency of 10 Hz. Thus,
the x-axis represents a window of 10 seconds.
[0008] FIG. 3B shows the difference in distance x between
predicted and measured pose over traveled distance z.
[0009] FIG. 4A is a graph showing GPS spoofing data
attack (red line) that introduces sudden jumps in both x-axis
and z-axis pose as derived from the OxTS measurement. An
LSTM based drift forecasting is used for determining attack
scenarios. It is assumed that the LSTM is trained on the first
50 frames and predicts the difference between GPS and
VO-derived pose for the remaining 50 frames.
[0010] FIG. 4B shows the difference between forecast
pose and observed x axis pose for the data of FIG. 4A.
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[0011] FIG. 4C charts the differences shown in FIG. 4B as
error.
[0012] FIG. 4D shows the difference between forecast
pose and observed z-axis pose for the data of FIG. 4A.
[0013] FIG. 4E charts the differences in FIG. 4D as error.
[0014] FIG. 5A shows attack survival using on-board
hardware oscillators in which a GPS spoofing attack on the
autonomous system is simulated where the attacker corrupts
the GPS timing data by replaying the same data with a delay
added.
[0015] FIG. 5B shows attack survival using on-board
hardware oscillators in which a GPS spoofing attack on the
autonomous system is simulated where the attacker corrupts
the GPS timing data by taking control of the GPS signal and
slowly moving the perceived truth.

DETAILED DESCRIPTION OF THE
INVENTION

A. Replay-Attack Detection Using Pose Validation

[0016] In replay attacks, visual sensors are compromised,
and the attacker inserts previous frames or holds an image
frame during the attack. As a result, visual odometry-based
algorithms fail. For example, the effect of a replay attack on
a stereo camera data is demonstrated in FIGS. 1A-1C which
present an example of a replay attack on stereo visual
odometry. Stereo-visual experiments are performed using
SOFT algorithm and code to enable training of neural
networks presented in I. Cvis ió and I. Petrovió, "Stereo
odometry based on careful feature selection and tracking," in
2015 European Conference on Mobile Robots (ECMR),
2015, pp. 1-6; and Stereo-odometry-soft. [Online]. Avail-
able: FIGS. 1A and 1B show flow matching (FIG. 1A) and
feature selection (FIG. 1B) for stereo-visual odometry on the
KITTI vision dataset that provides recordings from two
high-resolution color and gray-scale video cameras along
with the ground truth provided by a laser scanner and a
GPS/IMU localization system. A. Geiger, P. Lenz, C. Stiller,
and R. Urtasun, "Vision meets robotics: The KITTI dataset,"
International Journal of Robotics Research (IJRR), 2013.
FIGS. 1A and 1B have spoofed data on both of the stereo
sensors for 20 frames. FIG. 1C shows the large deviation of
the stereo odometry pose (red line) from the ground truth
(green line) resulting from the replay attack on the camera
inputs that affects both stereo sensors for 20 frames.
[0017] Visual and inertial odometry (VIO) algorithms can
provide navigation support during an attack. Standard visual
odometry can give a measure of pose and localization during
navigation. Hence, an attack on the camera image will create
erroneous pose estimates. According to a first embodiment
of the invention, secondary pose measurement from the
inertial measurement units ("IMUs") is used to cross-vali-
date the results generated from the visual odometry ("VO")
algorithms. According to a preferred embodiment, the
SOFT-VO algorithm and tool may be used for measuring
pose. Since any attack on the sensor image will corrupt the
pose measurement, attacks can be detected by estimating a
corresponding pose from the IMUs at every frame.
[0018] However, IMU measurements are not an absolute
representation of the ground truth, and as time progresses,
these measurements exhibit a non-linear drift away from the
correct value. Therefore, using an IMU-derived pose alone
for comparison and anomaly detection may result in high
false-positive rates. Therefore, the present invention
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includes a fast and configurable detection technique to
model the relative nonlinear drift between the IMU and VO
measurements. Specifically, according to a preferred
embodiment of the invention, a shallow neural network-
based non-linear autoregressive exogenous model (NARX)
is used to model the nonlinear drift between the IMU pose
and the VO-derived pose estimation. NARX can model a
target y at time t that depends on previous values of y and
another input x.

[0019] Shallow neural network-based NARX models are
fast, computationally efficient, and useful in modeling non-
linear drifts. Accordingly, an open-loop NARX model is
used for training the drift estimation between pose measure-
ments from different sensor inputs. A closed-loop model (see
FIG. 2) is used for multi-step prediction of the pose drift y(t)
based on Equation (1):

y(1)=F(),-WY1-2 · X,X,X,2, . . . )+€ (1)

[0020] Attack detection can be performed based on speci-
fying a threshold on the modeling error, as shown in FIGS.
3A and 3B. In this way, small temporal windows (such as the
10 s window in FIG. 4A) can be used to detect replay attacks
on the image sensors. An anomalous event is considered to
have been detected when the error E(t) crosses a predefined
threshold. This windowed approach can provide attack
detection within (10 s) from the launch of the attack.

B. GPS Spoofing Detection Using Visual Odometry

[0021] For a GPS spoofing attack, an attacker can spoof
the GPS data using weak or strong attack techniques. Q.
Luo, Y. Cao, J. Liu, and A. Benslimane, "Localization and
navigation in autonomous driving: Threats and countermea-
sures," IEEE Wireless Communications, vol. 26, no. 4, pp.
38-45, 2019. G. Oligeri, S. Sciancalepore, O. A. Ibrahim,
and R. Di Pietro, "Drive me not: GPS spoofing detection via
cellular network: (architectures, models, and experiments),"
in Proceedings of the 12th Conference on Security and
Privacy in Wireless and Mobile Networks, 2019, pp. 12-22.
For example, during replay based weak spoofing attack, an
attacker first records the authentic GPS data and then, using
a stronger signal generator, replays the GPS data near the
sensor. As a result, the GPS sensor can be induced to follow
the replayed data. On the other hand, during a strong attack,
an attacker creates a spoofed GPS data set and slowly
induces the victim to follow the fabricated data. Strong GPS
attacks start with a small perturbation in the receiver data so
that the attack is difficult to detect using anomaly detection
techniques. As time progresses, the attacker further deviates
the data from the ground truth and captures the receiver.

[0022] In this embodiment, there is presented a long
short-term memory (LSTM)-based detection technique that
offers real-time attack detection. In this embodiment, data
from the inertial measurement unit and GPS is cross-
validated using a secure LIDAR or camera measurement,
under the assumption that attackers do not have access to the
image/LIDAR sensor and therefore cannot corrupt the VO
or LIDAR-based pose estimation. For example, a GPS
spoofing attack is depicted in FIG. 4A, where a spoofed GPS
signal is introduced for 20 frames. To detect such attacks,
LSTM-based prediction and anomaly detection methods are
used. The LSTM design parameters are given in Table I.
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TABLE I

LSTM DESIGN PARAMETERS USED IN THIS WORK.

Design Parameter Value

Layers Sequence Input Layer with 1 feature
LSTM Layer with 200 hidden units

Fully Connected Layer with 1 response
Regression Layer

Training Algorithm ADAM
Max. Epochs 100
Gradient Threshold 1
Initial Learning Rate 0.005
Learning Rate Schedule piecewise
Learning Rate Drop Period 125
Learning Rate Drop Factor 0.2

[0023] According to this embodiment of the invention,
LSTMs are employed to predict the measurement differ-
ences between the GPS position and VO-derived positions
in x- and z-coordinates. The LSTMs use data from the first
half of a 10 s window for training and make predictions on
the last half of the window. Discontinuous, sudden, or abrupt
changes in the GPS measurement will create an anomalous
shift from the predicted and forecast positions, as shown in
FIGS. 4A-E which show the results of a spoofed GPS signal
for 20 frames, compromising the integrity of the positional
data and corrupting the IMU's computation.
[0024] FIG. 4A presents the GPS data attack that intro-
duces sudden jumps in both x-axis and z-axis pose as
derived from the OxTS measurement. An LSTM-based drift
forecasting is used for determining attack scenarios, where
the LSTM is trained on the first 50 frames and predicts the
difference between GPS and VO-derived pose for the
remaining 50 frames. FIGS. 4B and 4C show the difference
(FIG. 4B) and error (FIG. 4C) between forecast and
observed x-axis pose. Figured 4D and 4E show the differ-
ence (FIG. 4D) and error (FIG. 4E) between forecast and
observed z-axis pose.

C. Hardware Root-of-Trust in Spoofing Detection

[0025] The learning-based embodiments for cross-valida-
tion described herein require a trusted sensor reading. That
is, if/when an attacker corrupts external sensor inputs, an
internal root-of-trust is required for detecting the attack and
bearing through it or gracefully terminating driving. There-
fore, according to various embodiments of the invention,
on-board trusted hardware is employed to provide another
layer of protection against corrupted sensor data.
[0026] Trusted hardware mounted internally in the autono-
mous system can monitor the sensors' intrinsic properties
and detect data corruption. For example, GPS time signals
may be cross-validated with a free-running hardware oscil-
lator. A free-running oscillator will accumulate drift when
compared with another clock. Since GPS data contains time
signals for precise synchronization, GPS time signals can
measure the intrinsic frequency drift of a local free-running
oscillator. This frequency drift can be efficiently modeled
using a Kalman filter. Any attack on the IMU/GPS sensor
will create large deviations in measuring the local clock's
frequency drift. Thus, by measuring the frequency states of
a hardware clock using the received GPS signal as a refer-
ence, attacks on the received GPS data can be detected.
[0027] During an attack on an autonomous vehicle, it is
imperative to survive the attack either by relying on sec-
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ondary driving tactics or by graceful termination of the
autonomous driving. Therefore, the LSTM-based forecast-
ing techniques can be critical for surviving attacks. More-
over, an attack on the GPS/IMU can be survived using the
approximate on-board measurement of relevant data, as
shown in FIGS. 5A and 5B. The attacks shown in both FIGS.
5A and 5B are detected using an on-board free-running
oscillator. M. T. Arafin, "Hardware-based authentication for
the internet of things." M. T. Arafin, D. Anand, and G. Qu,
"A low-cost GPS spoofing detector design for internet of
things (IOT) applications," in Proceedings of the on Great
Lakes Symposium on VLSI 2017. ACM, 2017, pp. 161-166.
[0028] It will be appreciated by those skilled in the art that
changes could be made to the preferred embodiments
described above without departing from the inventive con-
cept thereof. It is understood, therefore, that this invention is
not limited to the particular embodiments disclosed, but it is
intended to cover modifications within the spirit and scope
of the present invention as outlined in the present disclosure.
It is specifically noted that every combination and sub-
combination of the above-listed and below-described fea-
tures and embodiments is considered to be part of the
invention.

1. A method for detecting a replay attack on an autono-
mous navigation system, comprising: training drift estima-
tion between pose measurements from different sensor
inputs using an open-loop shallow neural network-based
nonlinear autoregressive exogenous model; using a closed-
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loop model for multi-step prediction of pose drift y(t)
between said different sensor inputs based on the equation

y(t) = F(Vt-1, yt-2, ... , x1, X1-1, X1-2, ... )+€. (1)

specifying a predefined threshold modeling error;
specifying a temporal window for assessing anomalous

events;
implementing attack survival steps when error E(t)

exceeds said predefined threshold.
2. The method of claim 1, further comprising monitoring

trusted hardware mounted internally in said autonomous
navigation system to detect data corruption by cross-vali-
dating GPS time signals with a free-running oscillator.

3. A method for detecting a GPS spoofing attack on an
autonomous navigation system, comprising: using LSTM-
based prediction and anomaly detection to predict the mea-
surement differences between GPS position and VO-derived
positions in x- and z-coordinates using data from a first half
of a time period for training and making predictions on a
second half of the time period, and monitoring discontinu-
ous, sudden, or abrupt changes in GPS measurements as
compared to predicted positions.

4. The method of claim 3, further comprising monitoring
trusted hardware mounted internally in said autonomous
navigation system to detect data corruption by cross-vali-
dating GPS time signals with a free-running oscillator.
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