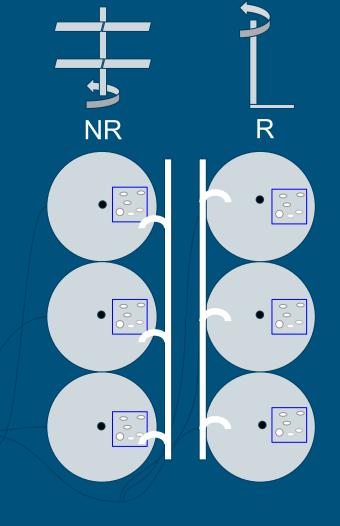

Effects of Tidal Resuspension with Oyster Biodeposits and Filtration in a Simulated Chesapeake Bay Ecosystem

Erin McPhillips
Mentored by Elka Porter

### Background

- Oysters
  - Suspension feeders
  - Filter water
  - Produce biodeposits
- Seston
  - o PIM
  - o POM
  - Sediment
- Experiment
  - Filtration




## Hypotheses

- Resuspension tanks
  - Higher seston concentration
  - Lower DO levels
- Oysters will cause lower:
  - Seston concentration
  - o DO levels
  - In-vivo Fluorescence



#### Methods

- Last year
  - 6 tanks, 3 resuspension (R), 3
     non-resuspension (NR), addition of
     biodeposits, non-resuspension have
     lower shear stress, 4 week experiment
- This year
  - Addition of oysters



## Study Site

- Collected mud from the Patuxent River, near the mouth of the St. Leonard Creek
- Mud placed in mesocosm tanks at PEARL with a 2-week equilibration period (Porter et al. 2006)







#### Methods

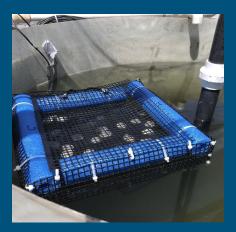
#### Daily Measurements

- Dissolved Oxygen
- In-vivo Fluorescence
- Secchi depth (on/off phases)
- Temperature (every 10 minutes)
- Turbidity

#### Other sampling

- Denitrification (N<sub>2</sub> flux)
- Biogeochemical Nutrient and Gas Fluxes
- Particulate Sediments
- Light
- Phytoplankton

#### **Biweekly Measurements**


- TSS (Twice a week)
  - Particulate Inorganic
     Matter (PIM) and
     Particulate Organic
     Matter (POM)
- Zooplankton
- Nutrients
  - Ammonium
  - Phosphate
  - Nitrate+nitrite
  - o Etc.





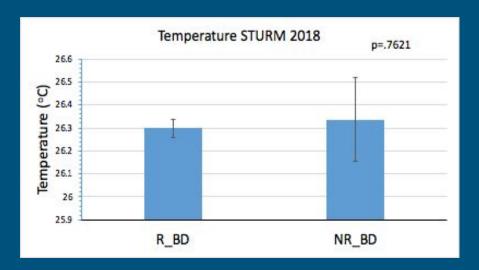
# Experiment

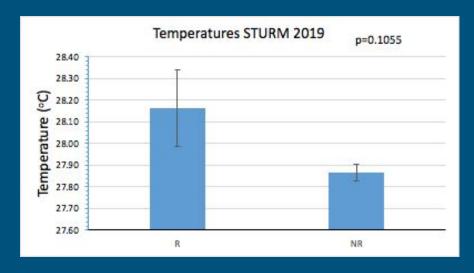
- Added oysters
- Filters
  - Collected samples
  - Filtered
  - Dried at 60°C
  - Weighed
  - Dried at 450°C
  - Weighed









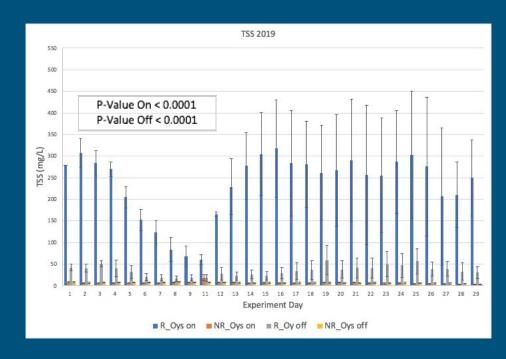


## Data Analysis

- Used t-tests in Excel to compare:
  - Seston concentration
  - o **DO**
  - Temperature
  - In-vivo fluorescence
- Will compare:
  - Nutrient levels
    - Chlorophyll a
    - Ammonium
    - Nitrate+nitrite



### Temperatures






#### Seston

Predictions:
Lower in 2019 vs. 2018
Lower in NR tanks

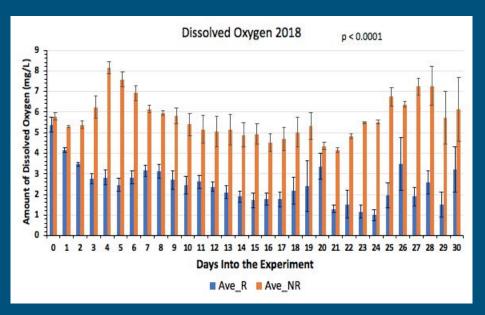
#### Seston

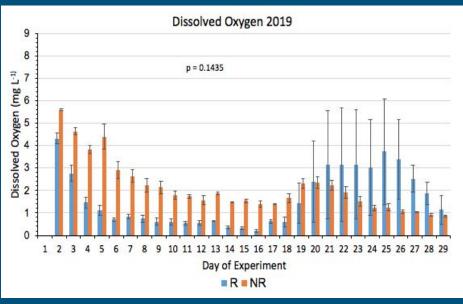




T-test for 2018 R vs. 2019 R

• P-value = 0.0503


T-test for 2018 NR vs. 2019 NR


P-value < 0.0001</li>

## Dissolved Oxygen

# Prediction: Lower levels in 2019 vs. 2018

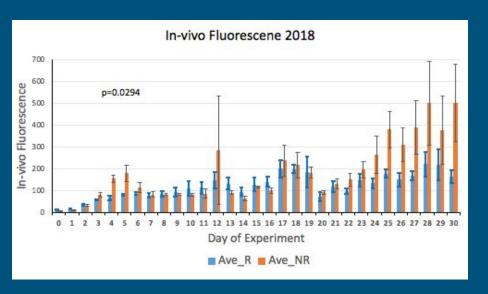
## Dissolved Oxygen

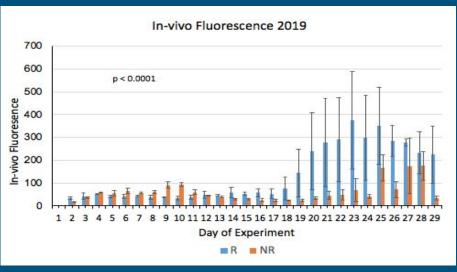




T-test for 2018 R vs. 2019 R

• P-value = 0.005


T-test for 2018 NR vs. 2019 NR


P-value < 0.0001</li>

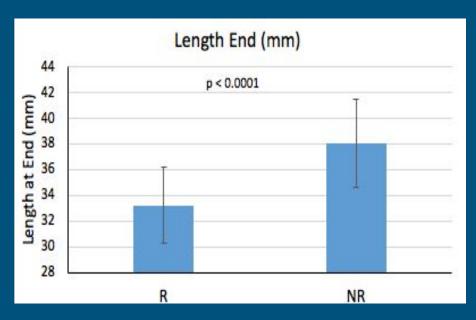
#### In-vivo Fluorescence

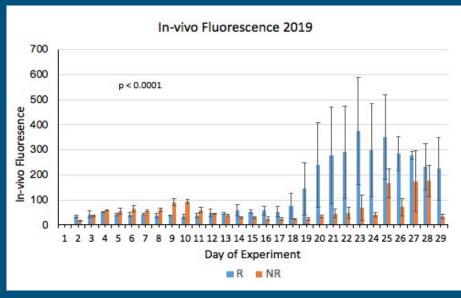
# Prediction: Lower levels in 2019 vs. 2018

#### In-vivo Fluorescence



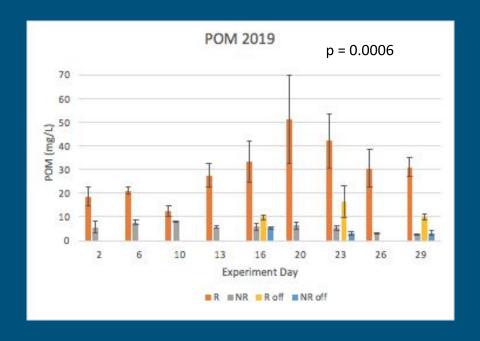



T-test for 2018 R vs. 2019 R


• P-value = 0.5618

T-test for 2018 NR vs. 2019 NR

P-value < 0.0001</li>


## Oyster Growth





## Particulate Organic Matter (POM)

- Significant difference between R and NR
- Variability due to differences between tanks 1, 2, and 3



## Future Analysis

- Water Column
  - Chlorophyll a
  - Nitrate+nitrite
  - o Ammonium
  - o SRP (Phosphate)
  - Silicate
  - o Particulate N, C, and P
  - Phytoplankton/Zooplankton
  - Light
- Biogeochemical Fluxes
  - N:
  - O 02
  - Nitrate+nitrite
  - o Ammonium
  - SRP (Phosphate)
  - o Sediment Chlorophyll a





#### 2019 Conclusions

- Significant difference between 2019 R and NR
  - Seston
  - o In-vivo Fluorescence
- Non-significant difference between 2019 R and NR
  - Dissolved Oxygen

#### 2018 vs. 2019

- Significant difference between 2018 R and 2019 R
  - Dissolved Oxygen
- Significant difference between 2018 NR and 2019 NR
  - Seston
  - Dissolved Oxygen
  - o In-vivo Fluorescence

### Acknowledgements

Dr. Elka Porter Richard Lacouture University of Baltimore Maryland Sea Grant PEARL Sabrina Tolbert Habibah Oladosu Jon Farrington Mike Owens Interns Dr. Randolph Larsen









