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1. INTRODUCTION 

The transportation sector is the main petroleum consumer in the US. The US Energy Information 

Administration estimates that the share of primary energy consumed by the transportation sector 

is 26% of total consumption (Monthly Energy Review, 2021). This results in an even larger share 

of greenhouse gas production at 35% of total emissions (EPA). These estimates are not likely to 

decline significantly in the next decade (Mousa et al., 2020). Furthermore, a significant portion of 

fuel consumed by vehicles is wasted at signalized intersections where automobiles come to a full 

stop, idle, and accelerate back to the desired speed. Total annual fuel losses at intersections is 

estimated to be about 2.8 billion gallons of gasoline per year (David Schrank et al.), which 

constitutes about 7% of total energy consumption in the US. To address this problem, several 

research efforts have developed so-called “eco-driving” systems that aim to optimize the speed 

profile of vehicles approaching signalized intersections. Although eco-driving systems have 

existed since the early 1990s, their implementation was limited to simple practices such as keeping 

tire pressure at optimum levels and smoothly accelerating or decelerating. 

Many transportation studies have since used more sophisticated techniques to decrease the 

consumption of fossil fuels and greenhouse gas emissions to reduce their disastrous effects on the 

environment. Optimizing vehicle speed profiles on the roads is one such way to produce significant 

fuel savings. Moreover, vehicle speed profiles at signalized intersections warrant  further study 

due to a large amount of fuel wasted at intersections. In this report, an overview of the vehicle 

trajectory optimization problem in the vicinity of actuated signals is described, and a review of the 

previous research work is presented. In the next sections, a detailed definition of the problem is 

provided, and a thorough review of the literature is presented illustrating the state of the art in this 

field of research. 

1.1. Eco-driving at Actuated Traffic Signals 

Even if the time it takes for actuated traffic lights to switch is uncertain, there are still ways to use 

this information to save fuel. (Mahler & Vahidi, 2014) created an algorithm to plan a vehicle's 

optimal speed while approaching actuated traffic signals. This algorithm uses both historical data 

and real-time phase information to predict when lights will change. To simplify the calculations, 

the algorithm uses a simplified cost function instead of a more complicated fuel consumption 

model. By using this algorithm, fuel savings of up to 6% were achieved over drivers who were not 

informed about the signals. 

(Sun et al., 2020) developed a system for eco-driving for vehicles that travel through multiple 

actuated traffic signal controllers where the Signal Phasing and Timing (SPaT) information is 

uncertain. They used an effective red-light duration (ERD) concept to address randomness in 

signal switching times and formulated the problem as a chance-constrained stochastic program. 

They used Dynamic Programming (DP) to optimize the vehicle speed, and they achieved fuel 
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savings of approximately 50-57% with minimal impact on arrival times. However, the study's 

major drawback is that it uses general probability density functions to account for uncertain 

switching times for different traffic conditions instead of using real-world SPaT information. 

Additionally, the fuel consumption model used in the study is computationally complex since it 

considers engine and transmission torque and gear number, making it impractical for real-time 

applications. Despite these limitations, previous literature suggests that it is possible to improve 

eco-driving at signalized intersections using SPaT information without the need for significant 

infrastructure changes. 

2. PROBLEM DEFINITION 

The eco-driving system uses communication systems to transmit  SPaT information from the signal 

infrastructure to nearby vehicles using Dedicated Short-Range Communications (DSRC). This 

communication takes place in a perimeter of approximately 300 meters away from the transmitting 

roadside unit (RU). DSRC can be either vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), 

or infrastructure-to-vehicle (I2V). The eco-driving system can be implemented for both automated 

vehicles and human-driven vehicles. For automated vehicles, the vehicle modifies its trajectory 

automatically, while in human-driven vehicles, the system works as a speed advisory system for 

drivers (Kamalanathsharma & Rakha, 2014). 

Vehicle trajectory optimization is the process of modifying a vehicle's speed profile to optimize 

fuel consumption and emissions. For example, when a vehicle approaches an actuated signal 

intersection and receives SPaT information once in DRSC range, four possibilities can occur 

(Kamalanathsharma & Rakha, 2014):  

1) The time to the intersection (TTI) is less than the time to red (TTR), which is the time when 

the green light indication will change to red. Then, the optimal vehicle trajectory is to 

maintain its speed without acceleration or deceleration.  

2) The time to the intersection (TTI) if the vehicle maintains its speed is larger than the time 

to red (TTR) but would make it through the intersection before the signal light switches to 

red if the vehicle accelerates to the maximum allowable speed limit. Then, the optimal 

speed profile is to accelerate to the speed required to pass the intersection during a green 

light indication. 

3) The time to the intersection (TTI) is inadequate for the vehicle to pass during a green light 

indication even if it accelerates to the maximum allowable speed, and the time to green 

(TTG) of the next phase is significantly larger than the vehicle's time to the intersection 

(TTI). Therefore, the optimal solution is to completely stop at the intersection. 

4) The time to the green of the next phase is not significantly larger than the time to 

intersection (TTI) so that the vehicle can alter its trajectory by decreasing its speed to a 

value so that it won’t have to come to a complete stop at the intersection and accelerate 

again to the desired speed, which is the optimal trajectory in this case. 
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The decision of the optimal vehicle trajectory is mainly based on the received information from 

the roadside unit (RU). In pre-timed or fixed traffic signals, the received information is 

deterministic and reliable for the trajectory optimization algorithm to take decisions. On the other 

hand, a deterministic estimate of the signal light’s time to change is difficult to obtain for actuated 

or semi-actuated traffic signals because the control logic of actuated signals is continuously 

changing its SPaT information to accommodate traffic detected by the traffic sensors. As such, for 

the problem of trajectory optimization to be tractable, it is required to consider the uncertainty in 

the available estimations of the signal switching times. This problem can be thought of as a 

stochastic optimization problem, where there are multiple possibilities for signal switching times. 

For each possibility, there is a different trajectory that can minimize the objective function of 

reducing fuel consumption. 

Some studies provided estimates of actuated signal timings switching from green to red and from 

red to green such as the work of (Eteifa et al., 2021) which utilized LSTM neural networks to 

predict reasonable estimates of signal switching times. The predicted switching times can be used 

together with their probabilities to formulate a two-stage stochastic program for the problem of 

vehicle trajectory optimization. 

2.1. Impact of SPaT Uncertainty on Fuel Savings in Eco-Driving 

Researchers have developed methods to address the uncertainty in SPaT predictions and achieve 

fuel savings despite uncertain information. However, there is a lack of information in the literature 

about how much the uncertainty in SPaT information affects achievable fuel savings. This makes 

it challenging to determine when a SPaT prediction is effective in reducing fuel consumption. 

Understanding the impact of SPaT prediction errors on fuel consumption can help assess the 

validity of SPaT predictions from an application standpoint and aid in choosing statistical or 

machine learning models. By examining prediction error distributions, better models can be 

selected, and their expected impact on fuel consumption savings with optimal eco-driving control 

can be determined. This study aims to investigate how the degree of uncertainty in SPaT 

predictions affects the achievable fuel savings when optimal vehicle control is implemented 

(Figure 1).  
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Figure 1: SPaT I2V Communication for Actuated Signals and Study Motivation 

2.2. Objectives and Contribution 

This study provides several contributions to the current literature and potential benefits for 

infrastructure operators and automotive original equipment manufacturers OEMs. It addresses the 

limitations found in previous research. The main contributions are: 

• Extending the deterministic vehicle control algorithm proposed by Kamalanathsharma 

and Rakha (Kamalanathsharma & Rakha, 2014) to a stochastic algorithm that minimizes 

fuel consumption as an objective function while considering vehicle jerk constraints. 

• Comparing the fuel consumption savings of the proposed system with actual field 

trajectories for uninformed drivers. 

• Describing a framework for the secure implementation of GLOSA using stochastic 

predictions. 

• Establishing benchmarks for practitioners who want to use statistical or machine learning 

models to forecast SPaT switching times based on both model bias and variance is needed 

to obtain the benefits of GLOSA. 

Overall, this study enhances eco-driving control by creating a stochastic algorithm that explicitly 

minimizes fuel consumption, enabling the comparison of fuel consumption savings with real-

world scenarios, and providing a framework for safe GLOSA implementation. Additionally, the 

benchmarks established can aid practitioners in selecting appropriate statistical or machine 

learning models to predict SPaT switching times accurately. 



5 

3. LITERATURE REVIEW 

Vehicle trajectory optimization has been tackled extensively in the recent literature. Indeed, many 

researchers have addressed that problem in the latest two decades, such as (Wan et al., 2016) who 

developed a driver speed advisory system (SAS) that approached the problem of trajectory 

optimization as an optimal control problem formulation through which the optimal solution of the 

problem was obtained analytically. The optimization formulation minimized fuel consumption as 

a cost function. This study showed that the SAS has a significant effect on fuel minimization by 

optimizing vehicle trajectories near signalized intersections. Even with a low penetration level of 

this system, it has a harmonizing effect on other vehicles’ motion in the vicinity and results in the 

overall decline of fuel consumption. However, this study considered all traffic signals as pre-timed 

or fixed signals and didn’t apply the system to actuated signals (Wan et al., 2016). 

Kamalanathsharma et al. (Kamalanathsharma & Rakha, 2014) developed an application that 

optimizes vehicle trajectories by leveraging wireless communication in the DSRC range. The study 

utilized the received SPaT information and made predictions of future constraints that the vehicle 

would be affected by to optimize the vehicle trajectory. The study considered vehicle dynamic 

models using a polynomial fuel consumption model and explicitly formulated the objective 

function as a fuel minimization problem. Results of the developed application show that the saving 

of fuel consumption near a signalized signal can range between 5% and 30% depending on the 

speed of the approach. Though, like the previously reviewed study, the model only considered 

fixed-time signals and did not consider the actuated signals where the SPaT information is difficult 

to obtain. In addition, the study did not consider lateral movement in the model of vehicle dynamics  

(Kamalanathsharma & Rakha, 2014). 

Most of the previous research has focused its work on the trajectory optimization of vehicles 

toward deterministic signal timings. The uncertainty and lack of exact information about signal 

phasing and timings (SPaT) make the deterministic approach of trajectory optimization 

inapplicable; however, as actuated signals are more widely deployed in the US. The literature 

shows that studies that consider the stochasticity of SPaT information received from actuated 

signals are overlooked. To the best of our knowledge, few researchers have considered actuated 

signals controllers.  Mandava et al., 2009 developed an algorithm to generate a vehicle speed 

profile by giving speed instructions to the driver so that the probability of reaching the signalized 

intersection during the green time is maximized. The algorithm uses a stochastic simulation 

technique to generate samples of possible trajectories for a signalized corridor that has 10 

signalized intersections. The developed algorithm resulted in energy savings of up to 14%. The 

study introduced some ways to deal with stochastic SPaT information. However, the objective 

function did not explicitly minimize fuel consumption or emissions. Instead, reaching the 

intersection during a green light was the primary goal. Another study by (Hao et al., 2015) 

developed an algorithm to estimate the maximum and minimum green time values for each phase 

of the actuated signal, and it recommended two possible trajectories based on the two estimates. 

The uncertainty decreases when the vehicle approaches closer to the intersection, yet the 
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optimization algorithm solved the stochastic problem by two deterministic solutions corresponding 

to maximum or minimum values. However, this approach might not be as efficient as considering 

expected time to change. 

Some studies approached the problem differently, such as the work of (Yao et al., 2020), which 

developed a joint optimization system that minimizes gasoline consumption of vehicles near 

actuated signals. In the upper level, the algorithm optimizes the actuated signal itself based on the 

predicted vehicle arrival which is calculated in the lower level. The vehicle trajectory is optimized 

in the lower level by a model predictive control. This study reported a decrease in fuel consumption 

and emissions by 22.36% and 18.61%, respectively (Yao et al., 2020). However, the runtime is 

significantly long as it uses a cyclic iteration method, which takes a long time to find the optimal 

trajectory, and thus, this algorithm is not practical for real-time implementation. In addition, the 

algorithm only considers the longitudinal vehicle movement and disregards the lateral movement. 

The algorithm modifies the actuated signal to accommodate the vehicle approaching the signal. If 

we envision that all vehicles at all approaches are equipped with the same algorithm, that will 

cause a contradiction between the optimization algorithm for each single vehicle trying to optimize 

the signal to accommodate its own movement, which makes this algorithm impractical. 

Some researchers have recently sought to address the gap in research concerning the uncertainty 

of signal switching times. One such example is (Mousa et al., 2019), who developed a framework 

for trajectory optimization at semi-actuated signals in which only the minor approaches  at an 

intersection have variable signal timings. The methodology was based on installing vehicle 

detectors 300m upstream of the stop line of the minor approaches. The algorithm resulted in 23.2%  

estimated fuel savings (Mousa et al., 2019). However, the framework has some drawbacks, such 

as the higher deployment costs generated by the installation of additional detectors. It also ignored 

turning movements and considered only through movements. Furthermore, the algorithm is not 

optimal to run in real-time situations as the optimal trajectory is found by a brute-force algorithm, 

which calculates all possible trajectories and selects the best one for implementation. This process 

is time consuming. On the other hand, as stated by the authors, the algorithm can be applied in 

real-time after running several simulations and storing enough data that can cover all possible 

scenarios that can occur. 

In the next sections, the mathematical formulation of the problem introduced in part I is presented 

and discussed. Two suggested formulations in this report are then presented. First, the suggested 

stochastic problem formulation is presented. Then, decision variables, constraints, data variables, 

and the underlying models that are used in the formulation are demonstrated. Finally, a minor 

variant of the formulation is presented.  
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4. RESEARCH METHODOLOGY AND DATA PREPARATION 

This research report presents an extension of the deterministic vehicle control algorithm proposed 

by Kamalanathsharma and Rakha (Kamalanathsharma & Rakha, 2014) to deal with actuated signal 

controllers. The problem of optimizing vehicle trajectory is formulated as a robust optimal control 

problem that considers uncertain signal switching times received through I2V communication. The 

system minimizes vehicle fuel consumption as an objective function and uses Dynamic 

Programming and A* algorithms to numerically solve the problem. A risk assessment procedure 

is implemented to ensure the algorithm's robustness towards uncertain signal information and 

prevent red light violations. The system's performance is evaluated by comparing it to the case of 

an uninformed driver approaching a traffic signal without prior information. The research 

methodology consists of defining the eco-driving problem, developing a holistic eco-driving 

system, evaluating the system's performance under different scenarios and levels of bias and 

variance, and identifying the effect of the vehicle's initial speed on the overall system performance. 

This study provides several contributions to the existing body of knowledge and potential benefits 

to infrastructure operators and automotive equipment manufacturers: 

• The proposed system addresses the drawbacks found in the literature and extends the 

deterministic vehicle control algorithm to a stochastic algorithm.  

• The study presents a framework for the safe application of the proposed system given a 

stochastic prediction. 

• The study identifies benchmarks for practitioners attempting to use statistical or machine 

learning models to predict SPaT most likely switching times. 

Overall, the study aims to improve eco-driving control decisions, achieve fuel savings despite 

uncertain information, and enhance the safety and efficiency of transportation systems. 

The eco-driving approach simulation results are compared to the case of an uninformed driver 

approaching a traffic signal without prior information about the switching time as a baseline. The 

uninformed driver data was retrieved from a field experiment conducted at the Virginia smart road 

test facility at the Virginia Tech Transportation Institute (VTTI) (Almannaa et al., 2019).  

This study adopts a four-step research methodology described as follows: 

• The first step involves defining the eco-driving problem and analyzing different 

scenarios. 
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• The second step is the development of a holistic eco-driving system that considers 

stochasticity and changing information while meeting vehicle and traffic signal 

constraints. 

• The third step evaluates the system's performance under different pre-defined scenarios 

and various levels of bias and variance in predictions. 

• The fourth step identifies how the vehicle's initial speed affects the overall system 

performance. 

4.1. Analysis Scenarios 

4.1.1 Base Scenario 

In this study, the base scenario is defined as shown in Figure 2, which involves a single-lane 

approach with no other traffic and a free-flow speed of 40 mph (64.4 kph), which is typical for 

urban arterials. The vehicle starts at the position  𝑋0, which is 250 meters upstream of the stop bar 

of an actuated traffic signal controller located at a position on 𝑋𝑀. The vehicle should accelerate 

to the desired speed by the position 𝑋𝑁, which is 180 meters downstream of the stop bar. The 

vertical grade is set at 3% either uphill or downhill. This setup is consistent with the field 

experiment used as a baseline for the study.  

The assumption is that the vehicle is within the communication range of an actuated traffic signal 

controller and that the controller is transmitting SPaT (Signal Phase and Timing) information to 

the vehicle in real time. However, because actuated signals are stochastic, the SPaT information 

will include the most likely signal switching times. 

 
Figure 2: Problem Setup 

 

4.1.2 Additional Analysis Scenarios 

The study utilizes the same problem setup for various scenarios, which are outlined in TABLE 1. 

• Scenario I involves an uninformed driver who approaches a red traffic signal and is 

unaware of the switching time. The switching time can take on values of 10, 15, 20, or 25 
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seconds. Vehicle trajectory data for this scenario is obtained from a previous field 

experiment conducted at the Smart road. 

• Scenario II involves providing the vehicle with signal switching time information to 

optimize the trajectory. In Scenario II, the vehicle is provided with the exact switching time 

for a fixed time signal, and a deterministic vehicle trajectory optimization algorithm is used 

to plan the acceleration/deceleration policy. 

• Scenario III is similar to Scenario II, in which an actuated traffic signal controller is 

simulated. However, the vehicle is provided with stochastic switching times that are 

sampled from normal distributions at each analysis time step. The mean of the distribution 

represents the true switching time plus an error bias value, while the standard deviation 

(STD) reflects the variability in switching time provided by prediction algorithms. The 

study tests different values of the bias and standard deviation to account for the quality 

levels of switching time prediction. 

This uncertainty in the stochastic nature of switching time prediction is inherent in actuated traffic 

signals. The study aims to evaluate the performance of the vehicle trajectory optimization 

algorithm under various scenarios and levels of uncertainty. The simulation results are expected 

to provide insight into the effectiveness of the algorithm in minimizing energy consumption while 

adhering to the constraints imposed by the vehicle and the traffic signal. 

TABLE 1 Analysis Scenarios  

Scenario Description Directions 
Initial Speed 

(mph) 

Switching Times 

(TTG) (sec) 

I 

(Baseline) 
Uninformed Driver 

1 (Downhill)  

or 2 (Uphill) 
40 10, 15, 20, 25 II 

Deterministic SPaT 

Information 

III 
Stochastic real-time SPaT 

Information 

 

To create an effective tool for planning trajectories for green light optimal speed advisory 

(GLOSA), the issue is approached as a problem of stochastic optimal control. The system assumes 

that the exact switching time of the traffic signal is unknown, and instead uses the most probable 

or probabilistic distribution switching time to plan the vehicle's trajectory. This means that the 

system operates under the assumption that the signal information the vehicle receives in real-time 

is uncertain as it approaches the intersection at each period of time ∆t. By incorporating this 

uncertainty into the system, the trajectory planning tool can adapt to changing traffic conditions in 

terms of the changing of traffic signal switching time and optimize the vehicle's speed to ensure it 

can pass through the intersection with the green light. This approach is crucial for developing a 

tool that can handle the stochastic nature of traffic signals and provide accurate recommendations 

to the driver, allowing them to save time, reduce fuel consumption, and minimize emissions. The 



10 

stochastic optimal control problem formulation considers the uncertainty in the switching times, 

allowing for the development of a more robust and adaptable trajectory planning tool that can 

operate in various traffic conditions. Overall, the stochastic optimal control approach ensures that 

the tool is effective in optimizing the vehicle's speed while accounting for the uncertainty in the 

signal information, improving traffic flow, and reducing environmental impact. 

5. MATHEMATICAL FORMULATION AND UNDERLYING 

SYSTEMS 

5.1. Mathematical Formulation 

The problem can be described as follows: We define a discrete time variable, denoted by t, which 

takes values from the set {𝑡0, … , 𝑡𝑓}. Here, 𝑡0 is the timestamp when a vehicle enters the system, 

and 𝑡𝑓 is the timestamp when it reaches its destination. The time interval between two consecutive 

timestamps is denoted by ∆t, which is assumed to be 0.1 seconds in this specific context. 

The purpose of Equation (1) is to minimize the total expected fuel consumption by considering the 

speed control policy, which is determined by the acceleration or deceleration level a_t at each 

timestamp t. The objective function sums up the expected values of fuel consumption, where 𝐹𝐶𝑡 

represents the instantaneous fuel consumption at time t. 

Min ∑ 𝔼(𝐹𝐶𝑡(𝑎𝑡)) ∙ ∆𝑡                         (1)

𝑡𝑓

𝑡=𝑡0

   

Further, let 𝑥𝑡 be a discretized distance variable at time 𝑡 that belongs to the space 𝕏 ⊂ ℝ𝑛, and 

𝑋𝑡 is the vehicle position at time 𝑡 (2). 𝑣𝑡  is the speed variable at time 𝑡 that depends the on 

acceleration/deceleration level 𝑎𝑡, which is governed by either the throttle input 𝑓𝑏,𝑡 or the braking 

deceleration level.  

𝑋𝑡 =  ∑ 𝑥𝑡

𝑡

𝑡0

= ∑ 𝑣𝑡 ∙

𝑡

𝑡0

∆𝑡                                (2) 

The admissible speed policy space is constrained by the vehicle dynamics, acceleration, jerk, and 

other system control constraints that ensure safety and comfort. 

The problem constraints are illustrated as follows: Equation (3) shows the upstream distance 

constraint, where the vehicle traveled upstream distance is equal to the traveled distance from the 

initial position 𝑋0 at time 𝑡0 until the time when the signal switches to green at position 𝑋𝑆. 

Knowing that the switching time is uncertain in this case, the expected value of the switching time 

𝑡𝑠 is used. The traveled upstream distance is upper bounded by the position of the stop bar 𝑋𝑀. 
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Note that using the expected value of the switching time denotes a risk-neutral attitude, where the 

upstream optimal trajectory is planned regardless of the risk of running a red light. However, this 

risk is eliminated by introducing a risk assessment procedure, where a critical stopping distance 

𝑑𝑐𝑟,𝑡 is calculated at every time step 𝑡. When the remaining distance to the stop bar is less than or 

equal to 𝑑𝑐𝑟,𝑡, the vehicle policy is set to decelerate at the maximum allowable rate 𝛼 (4). This 

maximum deceleration rate is set to −6.0  𝑚/𝑠2, which is considered a comfortable level of 

deceleration to stop. This is similar to an approach described in the literature that defined a last-

resort parabola for the minimum stopping distance [26]. 

𝑋𝑠 = ∑ 𝑣𝑡 ∙

𝔼(𝑡𝑠)

𝑡=𝑡0

∆𝑡 ≤ 𝑋𝑀                            (3) 

 

 

𝑣𝑡+∆𝑡 = 𝑣𝑡 + 𝛼 ∙ ∆𝑡      ∀ 𝑡 ≤ 𝔼(𝑡𝑠), ∀ 𝑋𝑡 𝑤ℎ𝑒𝑟𝑒 𝑋𝑀 − 𝑋𝑡 ≤ 𝑑𝑐𝑟,𝑡     (4)  

Similarly, the downstream speed policy is constrained to cover the downstream distance in 

addition to the remaining distance to the stop bar in the case when the signal switches before the 

vehicle reaches the position 𝑋𝑀 (5). Note that this constraint is applied after the true switching 

time 𝑡𝑠 is revealed. 

∑ 𝑣𝑡 ∙

𝑡𝑓

𝑡=𝑡𝑠

∆𝑡 = 𝑋𝑁 + (𝑋𝑀 − 𝑋𝑠)                     (5)  

The speed policy is further constrained by the kinematic equation (6), where 𝑎𝑡 is the vehicle 

acceleration/deceleration level. Equation (7) shows the speed limit constraint. Finally, the 

acceleration policy is constrained by the maximum jerk limitation of 1.3
𝑚

𝑠3
 to ensure the 

passengers’ comfort (8), where 𝑓𝑏,𝑡 is the throttle input [27]. 

𝑣𝑡+∆𝑡 = 𝑣𝑡 + 𝑎𝑡 ∙ ∆𝑡   ∀𝑡 ∈ {𝑡0, … , 𝑡𝑓}                                  (6)  

𝑣𝑡 ≤ 𝑣𝑙𝑖𝑚    ∀𝑡 ∈ {𝑡0, … , 𝑡𝑓}                                                     (7)  

𝑎𝑡+∆𝑡 ≤ 𝑎𝑡 + 1.3 ∙ ∆𝑡          ∀𝑡 ∈ [𝑡0, … , 𝑡𝑓],   ∀ 𝑓𝑏,𝑡 > 0   (8)  

5.2. Underlying Systems 

In order to determine the optimal trajectory for a vehicle, spatiotemporal variables are defined 

using vehicle dynamics models which take into account the current state variables and the forces 



12 

acting on the vehicle such as tractive, aerodynamic, rolling, and grade resistance forces. The 

solution space is discretized in both time and space, and at each time step ∆t, vehicle dynamics, 

and fuel consumption models are used to evaluate the optimal vehicle trajectory. 

To model the vehicle's acceleration and deceleration behavior based on throttle and braking 

inputs, it is necessary to take into consideration all the forces and constraints on the vehicle. For 

the purposes of this research, a dynamic model for light-duty vehicles on varied terrain was used 

(Hesham Rakha et al., 2004), which computes the vehicle acceleration, tractive, and resistance 

forces as follows: 

• The acceleration of the vehicle is determined by dividing the difference between the 

tractive force and the resisting force by the mass of the vehicle. This can be expressed 

mathematically as Equation 8, where 𝐹𝑡 and 𝑅𝑡 represent the tractive and resistance forces 

at time t. 

𝑎𝑡 =
𝐹𝑡 − 𝑅𝑡

𝑚
  (9) 

• The force that the engine applies to the vehicle, known as the tractive force, is calculated. 

This force is limited by the maximum tractive force between the tires of the vehicle and 

the surface of the pavement (Equation 9). The equation includes several variables, such as 

the throttle input (𝑓
𝑏
) which ranges from 0 to 1, the driveline efficiency (𝜂

𝑑
), and a gear 

shift impact factor (β) which is set to 1.0 for light-duty vehicles (Hesham Rakha et al., 

2004). Additionally, the equation includes the vehicle power at time t (𝑃𝑡the vehicle speed 

at time t (𝑣𝑡), the vehicle mass on the tractive axle (𝑀𝑡𝑎) in kilograms, the road friction 

coefficient (μ), and the gravitational acceleration (g) measured in meters per second 

squared. 

𝐹𝑡 = min [3600𝑓𝑏,𝑡𝜂𝑑β
𝑃(𝑡)

𝑣(𝑡)
, 𝑀𝑡𝑎𝑔μ] (10) 

• The force that opposes the motion of the vehicle is the sum of three components, namely 

rolling, aerodynamic, and grade resistance forces. The formula used to calculate the resistance 

force is given as Equation 10, where ρ represents the density of air, 𝐶𝑑 and 𝐶ℎ denote the drag 

coefficient and altitude correction factor of the vehicle, respectively. 𝐴𝑓 is the frontal area of 

the vehicle, and 𝑐𝑟0, 𝑐𝑟1 and 𝑐𝑟2 are the constants for rolling resistance. 

𝑅(𝑡) =
𝜌

25.91
𝐶𝑑𝐶ℎ𝐴𝑓𝑣2(𝑡) + 𝑚𝑔

𝑐𝑟0

1000
(𝑐𝑟1𝑣(𝑡) + 𝑐𝑟2) + 𝑚𝑔𝐺(𝑡) (11) 
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5.2.1 Fuel Consumption Model 

To ensure that fuel consumption rates are accurately estimated and consistent with actual in-field 

measurements, the research team employed the Virginia Tech Comprehensive Power-Based Fuel 

Consumption model (VT-CPFM-1) (Rakha et al., 2011). This model has a number of advantages 

over existing fuel consumption models found in the literature, including the elimination of the 

bang-bang control behavior and the ability to be easily calibrated using publicly available vehicle 

data. Furthermore, it is known for its simplicity and accuracy in calculating instantaneous fuel 

consumption from instantaneous vehicle power. The formulation of the VT-CPFM-1 model used 

in this study is presented in Equation 11 below. More information on this model can be found in 

the literature (Rakha et al., 2011). 

The VT-CPFM-1 model is able to accurately estimate fuel consumption rates because it takes into 

account a number of factors that contribute to fuel consumption, such as engine power, speed, and 

vehicle weight. By considering these factors, the model is able to provide a more realistic estimate 

of the amount of fuel consumed by the vehicle in a given time period. In addition, the model is 

able to account for the fact that fuel consumption rates can vary depending on the driving 

conditions, such as traffic congestion or changes in speed. 

𝐹𝐶𝑡 = {
𝛼0 + 𝛼1𝑃𝑡 + 𝛼2𝑃𝑡

2   ∀𝑃𝑡 > 0
𝛼0                                 ∀𝑃𝑡 ≤ 0

 (12) 

Where 𝛼0, 𝛼1 and 𝛼2 are the model constant calibrated for the specific vehicle in use. 𝑃𝑡 is 

the instantaneous vehicle power calculated (13). 

𝑃𝑡 = (
𝑅𝑡 + 1.04 𝑚𝑎𝑡

3600𝜂𝑑
) 𝑣𝑡 (13) 

In this context, the variables 𝑎𝑡 and 𝑣𝑡 represent the current acceleration and speed of the vehicle, 

respectively, and m refers to the vehicle's mass. The driveline efficiency is denoted by 𝜂𝑑. The 

study utilized a 2014 Cadillac SRX for the field test, and therefore the calibrated parameters for 

this vehicle were utilized to ensure comparability between the simulated results and the 

experimental results obtained in the field. The vehicle parameters, which can be found in Table 2, 

were used as a baseline for the calculations. 
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TABLE 2 Cadillac SRX 2014 Parameters 

 

5.2.2 Vehicle Dynamics Model 

The utilization of vehicle dynamics models involves defining spatiotemporal variables based on 

current state variables and acting forces on the vehicle, such as tractive, aerodynamic, rolling, and 

grade resistance forces. The discretization of the solution space necessitates the use of vehicle 

dynamics and fuel consumption models to determine the optimal vehicle trajectory at each time 

interval ∆t. To accurately model the vehicle's acceleration and deceleration, accounting for all 

acting forces and constraints, it is necessary to consider the throttle level or braking inputs. This 

research aims to optimize the trajectory of light-duty vehicles and employs a dynamic model for 

light-duty vehicles on varied terrain (Hesham Rakha et al., 2004). This model computes the vehicle 

acceleration, tractive, and resistance forces as described below. 

• To calculate the vehicle's acceleration, the net force acting on the vehicle (which is the 

tractive force minus the resisting force) is divided by the vehicle mass 𝑚, as shown in 

Equation 9). The tractive force at time t is represented by 𝐹(𝑡), and the resistance force at 

time t is represented by 𝑅(𝑡). 

𝑎(𝑡) =
𝐹(𝑡) − 𝑅(𝑡)

𝑚
 (14) 

• The vehicle's tractive force is determined by the force generated by the engine, which has 

an upper limit of the maximum tractive force between the vehicle tires and the pavement, 

as illustrated in Equation 10. The calculation takes into account various factors, including 

the throttle input 𝑓𝑏 (ranging from 0 to 1), driveline efficiency (represented by 𝜂𝑑), and the 

gear shift impact (represented by β, which is set to 1.0 for light-duty vehicles) (Hesham 

Rakha et al., 2004). Other variables included in the equation are the vehicle power 

(represented by 𝑃(𝑡)), vehicle speed (represented by 𝑣(𝑡)), vehicle mass on the tractive 

axle (represented by 𝑀𝑡𝑎 in kilograms), road friction or adhesion coefficient (represented 

by μ), and gravitational acceleration (represented by 𝑔 in 𝑚/𝑠2). 

𝐹(𝑡) = min [3600𝑓𝑏𝜂𝑑β
𝑃(𝑡)

𝑣(𝑡)
, 𝑀𝑡𝑎𝑔μ] (15) 

Parameter Value Parameter Value 

𝛼0 7.89E-04 𝐴𝑓 3.33 

𝛼1 -5.77E-19 𝜂
𝑑
 0.92 

𝛼2 2.27E-06 % Mass on tractive axle 0.54 

𝑐𝑟0 1.75 𝑚 2388 

𝑐𝑟1 0.0328 𝑃𝑚𝑎𝑥 229.7 
𝑐𝑟2 4.55 𝐶ℎ 0.95 

𝑐𝑑 0.39 𝜌 1.2256 
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• The total resistance force that acts on the vehicle is calculated by adding up the rolling, 

aerodynamic, and grade resistance forces, as shown in Equation 11. The equation includes 

several variables, such as air density (represented by 𝜌), the vehicle's drag coefficient 

(represented by 𝐶𝑑  ), and the altitude correction factor (represented by 𝐶ℎ). Other variables 

include the vehicle's frontal area (represented by 𝐴𝑓) and the rolling resistance constants 

(represented by𝑐𝑟0, 𝑐𝑟1 and 𝑐𝑟2). 

𝑅(𝑡) =
𝜌

25.91
𝐶𝑑𝐶ℎ𝐴𝑓𝑣2(𝑡) + 𝑚𝑔

𝑐𝑟0

1000
(𝑐𝑟1𝑣(𝑡) + 𝑐𝑟2) + 𝑚𝑔𝐺(𝑡) (16) 

 

5.3. Solution Approach 

5.3.1 Stochastic Dynamic Programming 

Due to the non-linear stochastic nature of the optimization problem at hand, determining the 

optimal speed policy can be computationally intensive. To make this algorithm more practical for 

real-world use, we need to decrease its complexity and find a heuristic solution that is sufficiently 

close to the optimal one in a reasonable amount of time. One way to accomplish this is by using 

dynamic programming (DP), which is a powerful method for solving stochastic optimization 

problems that works by discretizing time and utilizing Bellman's principle of optimality. DP is 

well-regarded for significantly reducing computation complexity. (Gianluca Fusai, 2008) 

In our problem, we have only one control variable (𝑚 = 1), which can be either the throttle input 

or deceleration level. The problem is solved within a control time horizon of length 𝑇 =

(𝑡𝑓−𝑡0)/∆𝑡, which is equal to the time difference between the starting time 𝑡0 of the simulation 

and the final time 𝑡𝑓 when the vehicle reaches its destination at the position 𝑋𝑁, divided by the 

time step ∆t. Therefore, the solution space is ℝ𝑚×𝑇
. Dynamic programming provides a powerful 

tool to break down the problem into a sequence of T subproblems, each defined in the space ℝ𝑚
. 

This decomposition significantly reduces the computational complexity of the problem. 

As depicted in Figure 3, the solution approach is described as follows: 

1. In the beginning, when the vehicle reaches the upstream link, it is in a position 𝑆0 and the 

traffic signal is red. 

2. The system uses the current speed to calculate the critical distance 𝑑𝑐𝑟 required to 

decelerate at the maximum allowable deceleration level (𝛼 = −6 𝑚/𝑠2). The system also 

checks the remaining distance to the stop line at the signalized intersection, 𝐷𝑖. 

3. While the traffic signal is red, the system evaluates the risk of running the red light by 

comparing the remaining distance to the intersection with the critical stopping distance. 

There are two possibilities: 
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a. If the remaining distance is less than or equal to the critical distance, the risk of 

running the red light is high, and the system adopts a deceleration policy with the 

rate α. 

b. If there is no risk of red-light violation, the system receives SPaT information, 

generates the next state policy for the vehicle using the A* algorithm, and repeats 

steps 1 through 3. 

4. If the traffic signal turns green, the system generates the next downstream policy states 

using the A* algorithm until the vehicle reaches the destination at the position 𝑆𝑀. 

 

 

 

Figure 3 The Stochastic Setting Solution System 

Safety Distance Buffer 

Preventing the vehicle from running a red light is ensured through a risk assessment procedure 

which calculates the critical stopping distance 𝑑𝑐𝑟,𝑡 based on the current speed and a desired 

deceleration level as vt
2/2ades, where ades is the desired deceleration level. When the vehicle’s 

distance to the intersection is less than the critical distance, the vehicle will start decelerating to a 

stop as long as the signal indication is still red. This procedure is defined to prevent the vehicle 
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from running a red light and to ensure that it decelerates at some acceptable level, which might 

happen due to the uncertainty in the switching time predictions. However, this procedure can also 

lead to unnecessary fuel losses when the vehicle starts decelerating, the signal switches to green, 

and then the vehicle accelerates back to the desired speed, losing some fuel.  

To mitigate this issue, an enhancement is proposed by incorporating a real-time calculated safety 

time buffer (B). This buffer represents an additional delay imposed by the system to prevent the 

vehicle from reaching the critical distance to the intersection and activating the risk assessment 

procedure. As shown in Figure 4, the safety buffer (B) is calculated in real time using the expected 

time to green (𝑇𝑇𝐺) and the critical distance 𝑑𝑐𝑟,𝑡, according to the analytical solution shown in 

(14). It is shown that the vehicle avoids reaching the critical distance to the intersection until the 

signal switches to green. It is also noted that in some cases, when the switching time is relatively 

long, the vehicle will have to stop anyway and idle at the intersection until the light turns green. 

𝐵 =
𝑇𝑇𝐺

𝑑𝑢

𝑑𝑐𝑟,𝑡
− 1

                                (17) 

 

Figure 4: The effect of the safety time buffer (𝑩) to prevent the vehicle from entering the critical 

distance to the intersection. 

5.3.2 The A* Algorithm 

The A* algorithm is a method for finding the shortest path by using a cost estimate that 

takes into account the expected cost of moving from the current state to the goal state. It has been 

applied in previous research to determine the trajectory of vehicles in situations where outcomes 

are certain (Kamalanathsharma & Rakha, 2014). In this study, the A* algorithm is employed to 

determine the next acceleration/deceleration policy with the least cost. This policy is then assumed 

to remain the same for the rest of the time horizon (Figure 5). The cost estimate heuristic in our 
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problem is calculated over two sections: the upstream and downstream sections, which are 

described as follows: 

1. The system performs an outer loop iteration for each upstream admissible policy in the 

upstream section. The algorithm assumes that each policy will remain the same until 

the vehicle reaches the position 𝑋𝑠. Policies that violate the expected red-light condition 

are considered infeasible. The system then computes the fuel consumption for each 

feasible policy 𝑖 in the upstream section 𝑈𝑖. 

2. For each feasible policy 𝑖, the system performs an inner loop iteration to generate 

admissible downstream policies based on the vehicle's state at position 𝑋𝑠. Similar to 

the upstream section, each downstream policy is assumed to remain the same until the 

vehicle reaches the destination at the position 𝑋𝑁. The system computes the fuel 

consumption for each upstream policy i and downstream policy j in the downstream 

section 𝐷𝑖𝑗. 

3. Using the heuristic cost estimates for both the upstream and downstream sections, the 

A* algorithm selects the upstream next-state policy with the minimum total fuel 

consumption of the two sections (𝑈𝑖+𝐷𝑖𝑗) for each upstream policy 𝑖. 

4. Once the vehicle reaches the downstream section, the system only iterates in the inner 

loop to select the policy with the minimum fuel consumption 𝐷𝑖𝑗. 

 

 

 
Figure 5: Logic of A-Star Algorithm to Find the Minimum Path 

 

6. ANALYSIS RESULTS 

6.1. Optimal Policy for Deterministic SPaT information 
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To solve our problem in specific scenarios listed in TABLE 1, the trajectory optimization system 

is used when the SPaT information is deterministic. Once the system receives the signal switching 

time from the controller, it computes the optimal trajectory that results in the best fuel economy. 

Figure 6 and Figure 7 demonstrate that when the time to green (TTG) is 10 seconds, the optimal 

policy is to maintain the current speed because the time to reach the intersection is greater than the 

time to green. To minimize fuel losses, the system uses the minimum throttle level required to 

overcome the resistance forces and maintain the vehicle's speed. When the TTG is 15, 20, or 25 

seconds, the system recognizes that the vehicle needs to be delayed before reaching the stop line 

and applies the optimal deceleration levels to achieve the desired delay. For all cases downstream 

of the traffic signal, the system determines the optimal acceleration policy to reach the desired 

speed at the destination position. 

 
Figure 6: Comparison of Trajectories for Downhill Grade: Uninformed Driver (Scenario I) vs. 

Optimal Deterministic Trajectory (Scenario II) 
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Figure 7: Comparison of Trajectories for Uphill Grade: Uninformed Driver (Scenario I) vs. 

Optimal Deterministic Trajectory (Scenario II) 

6.2. Optimal Policy for Stochastic SPaT information 

When the exact signal switching time is not provided, signal switching time predictions are 

used to plan the vehicle's trajectory. In simulations, these predictions mimic stochastic SPaT data 

received from a traffic signal controller. The prediction uncertainty is represented by a constrained 

normal distribution with two components: a bias value added to the mean and a standard deviation 

reflecting random errors in the SPaT prediction model (SD). Bias and SD values are sampled up 

to a maximum predefined value of 8 seconds, and a new random distribution is generated at each 

time interval based on the vehicle's position. 

The system is used in various scenarios described in Table 1 with different probability 

distributions. At each time interval (∆t), the system receives a value sampled from the switching 

time probability distribution. Based on this information, the system generates a policy that 

maximizes fuel efficiency while considering the available information. This results in a variable 

policy behavior, as seen in Figure 8 and Figure 9. The system regulates the intensity of policy 

changes based on the jerk limit to ensure passenger comfort levels are not compromised. 

If the exact signal switching time is unknown and the time-to-green (TTG) is 10 seconds, 

the system's ideal strategy is to keep moving at the current speed until it reaches the risk area. Once 

the vehicle enters the risk area, it decelerates until it comes to a stop if the signal is still red. The 
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sudden drop in the acceleration profile in Figure 8 illustrates this risk assessment method. When 

the traffic signal turns green, the vehicle accelerates again to reach its destination at the desired 

speed. 

Likewise, in cases where TTG is 15 and 20 seconds, the system creates the best 

deceleration plan while constantly monitoring the danger zone. If the danger zone is reached, the 

car activates the deceleration policy and stops as long as the signal is still red. If the light turns 

green during deceleration, the vehicle will modify its plan to accelerate and attain the desired speed 

at the destination position. 

 
Figure 8: Comparison of Trajectories for Downhill Grade: Uninformed Driver (Scenario I) vs. 

Optimal Stochastic Trajectory (Scenario III) 
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Figure 9 Comparison of Trajectories for Uphill Grade: Uninformed Driver (Scenario I) vs. Optimal 

Stochastic Trajectory (Scenario III) 

6.3. Fuel Consumption Savings for Deterministic and Stochastic Settings 

The study compared the fuel consumption of an informed driver using an optimization system to 

an uninformed driver in both deterministic and stochastic settings. The results showed that the 

optimization system significantly reduced fuel consumption in both cases. The stochastic SPaT 

information was used to mimic real-world traffic signal data, and the results were averaged over 

different levels of bias and standard deviations. The overall average fuel savings were 37% and 

28% for deterministic and stochastic settings, respectively, as shown in Figure 10. The fuel savings 

were highest when the car was moving downhill with a TTG of 15 seconds, reaching up to 63% 

for deterministic and 42% for stochastic TTG. This is because the minimal throttle is needed to 

overcome resisting forces and make the vehicle cruise downhill. 

The study found that TTG=15 is the most efficient setting because the optimal policy requires only 

a small deceleration to reach the stop bar by the time the signal turns green. The starting speed of 

the vehicle is 40 mph, and the average speed needed to reach the stop bar at the time the signal 

turns green is 37.3 mph. In a stochastic setting, the policy becomes more conservative, and more 

than needed deceleration is applied to account for the possibility that the SPaT information is not 

entirely accurate. This ensures that the vehicle stops in time, even if the prediction is incorrect. An 

uninformed driver would not have this information and would be more likely to stop, resulting in 

higher fuel consumption. 
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The study also demonstrated that the closer the time to green is to the time needed to reach the 

stop bar, the more sensitive the fuel consumption is to the accuracy of the prediction. Therefore, 

accurate SPaT information is critical for optimizing fuel consumption in stop-and-go traffic. The 

optimization system's effectiveness in reducing fuel consumption highlights the importance of 

incorporating intelligent transportation systems in modern vehicles to improve fuel efficiency and 

reduce emissions. These systems can provide valuable information to drivers and help them make 

informed decisions that result in lower fuel consumption and environmental impact. 

The study investigated the effect of traffic signal switching times on fuel consumption in vehicles, 

considering both deterministic and stochastic scenarios. When the time to green (TTG) is 25 

seconds, the vehicle cannot reach the stop bar without stopping, so fuel savings are achieved 

mainly by optimizing the acceleration profile in the downstream section. In this case, the fuel 

savings achieved by the optimization system with deterministic and stochastic SPaT information 

are similar, at 21% and 20% respectively, compared to an uninformed driver. 

However, as the TTG decreases, the difference between the deterministic and stochastic scenarios 

becomes more pronounced, as optimizing the trajectory in the upstream section becomes 

increasingly important in reducing fuel consumption. The study found that optimizing the 

upstream trajectory can result in additional fuel savings of up to 22% for deterministic SPaT and 

19% for stochastic SPaT. This emphasizes the significance of having accurate and reliable 

predictions for traffic signal switching times to enable efficient trajectory planning and fuel-saving 

optimization. 

Overall, the study showed that the optimization system was able to achieve significant fuel savings 

compared to an uninformed driver, with average savings of 37% and 28% for the deterministic 

and stochastic scenarios, respectively. The maximum fuel savings were achieved in the downhill 

setting with TTG=15 seconds. The study also demonstrated that the closer the time to green is to 

the time needed to reach the stop bar at the current vehicle speed, the more sensitive fuel 

consumption is to the accuracy of the prediction. 
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Figure 10: Fuel Consumption Savings of Scenario II and III over Scenario I 

6.4. Effect of Bias and Variance on the Trajectory Planning Algorithm 

The impact of the accuracy of traffic signal prediction on fuel consumption was analyzed by 

conducting a sensitivity analysis that varied the normal distribution parameters of error bias and 

standard deviation. A total of 320 runs were performed using different values of bias and SD 

(Figure 11). The results showed that the change in SD values had a significant effect on fuel 

consumption, whereas the effect of the bias value was not significant. Generally, additional 

uncertainty in the prediction led to fuel savings losses, except for the case where the time to green 

(TTG) was 15 seconds. 

In the case of TTG=15s, the optimal fuel consumption levels decreased as the stochasticity 

of the prediction increased. This behavior can be explained by considering the vehicle's travel time 

from the initial position to the intersection, which equals the switching time, based on the initial 

speed of 40 mph. The vehicle approaches the stop line just as the signal is about to switch to green. 

However, the system activates a risk assessment procedure to ensure that no violations of traffic 

signal timings occur. Therefore, the vehicle begins to decelerate until the signal switches to green. 
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By introducing additional stochasticity, the vehicle can be delayed enough so that the signal will 

switch before the vehicle enters the risk zone and activates the stopping strategy. This is the only 

case when the more stochastic the information is, the better fuel economy can be achieved. 

Figure 12 illustrates the relationship between fuel consumption and stochasticity in the case 

of TTG=15s. The graph shows a downward trend in fuel consumption as stochasticity increases, 

which is consistent with the explanation above. It demonstrates that the optimal fuel consumption 

policy for this scenario is a delicate balance between minimizing deceleration and ensuring that 

the vehicle does not violate traffic signal timings. Therefore, the stochasticity of the prediction 

plays a crucial role in achieving fuel savings in this particular scenario. 

 
Figure 11: Fuel Consumption vs. Bias and SD Values for TTG=20s, Downhill Grade 
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Figure 12: Fuel Consumption vs. Bias and SD Values for TTG=15s, Downhill Grade 

6.4.1 The Effect of Varying Initial Speed 

To test the response of the system to stochastic SPaT information, the initial vehicle speed was 

varied from 40 mph to 29 mph (Figure 13). The analysis showed that when the initial speed was 

lower, the system generated a nearly constant policy for TTG of 10 and 15 seconds. The policy 

was to provide minimum constant acceleration to reach the stop bar within the green and then 

reach the destination at maximum speed. This was because the optimal policy allowed the vehicle 

to arrive late enough to accommodate the switching time probability distribution for TTG of 10 

and 15 seconds. For TTG of 20 and 25 seconds, a regularly fluctuating acceleration policy was 

generated to reduce the speed of the vehicle enough to reach the intersection before the signal 

turned green. However, a slow deceleration was followed by a sharp deceleration as the vehicle 

approached the safe stopping distance from the stop bar. This indicates that the prediction accuracy 

becomes more critical as the time to green gets closer to the time until reaching the intersection 

given the initial speed. 
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Figure 13: Optimal Trajectory Plots of Vehicle at Initial Speed of 13m/s (29mph). 

6.5. Impact of Confidence in SPaT Information on the Fuel Consumption 

This section discusses the importance of the level of confidence required in switching time 

prediction to reduce fuel consumption in a stochastic setting. The upper bound of fuel consumption 

savings is achieved in the deterministic setting, so this section aims to identify how the level of 

uncertainty impacts the savings. Figure 14 shows the relationship between the proportion of fuel 

saving and the parameters of the switching time probability distribution. The maximum fuel saving 

occurs when there is no uncertainty in switching time information, and the savings proportion 

decreases as the standard deviation and mean bias increase. This section concludes that fuel 

savings of more than 85% can be achieved in the stochastic setting when the standard deviation is 

less than 1.25 seconds, and the mean bias is less than 0.8 seconds. This means that a confidence 

level of 95% can be achieved with a switching time prediction error of up to ±3.3 seconds, 

providing insights into the required level of confidence in SPaT prediction to achieve significant 

fuel savings.  
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Figure 14 Relationship between Standard Deviation and Bias of Switching Time Probability 

Distribution and Fuel Consumption Savings in Stochastic Scenario II 

7. CONCLUSIONS AND RECOMMENDATIONS 

This report discusses the development of an optimal Green Light Optimal Speed Advisory 

(GLOSA) system designed to find the optimal trajectory for a vehicle approaching a traffic signal 

controller, taking into account fixed and actuated traffic signals where the exact signal switching 

time is unknown. The I2V provides a probability distribution for the switching time to the vehicle. 

The objective function is to minimize fuel consumption, solved through a Dynamic Programming 

(DP) procedure utilizing the A-Star algorithm to find the minimum-cost path. A risk assessment 

procedure is implemented to control the vehicle's acceleration and deceleration levels so the red 

light is not violated, and passengers' comfort is achieved by controlling the vehicle acceleration 

jerk to limit the disruption due to the error fluctuations in the expected switching time at each time 

step. 

Simulation results show that significant fuel savings can be achieved, with an average of 37% and 

28% for the deterministic and stochastic settings, respectively. Additionally, the system is resilient 

to the errors inherent to uncertain switching time predictions, as it is able to adjust the vehicle 

trajectory in real time according to the updated predicted probability distribution of the switching 

time. The system is also sensitive to prediction errors when the time to green is close to the time 

required for the vehicle to reach the intersection given its current speed. 

The proposed system can achieve more than 85% of the possible savings achieved in the case of 

fixed time signals if the timing error is (± 3.3 seconds) at a 95% confidence level. It was shown 

that initial speed affects vehicle acceleration and deceleration fluctuations, which can be useful in 

planning trajectories in a corridor that has consecutive signal controllers. 

Future research could explore the stochastic optimizer for different levels of market penetration 
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within surrounding uninformed drivers when queues form upstream of the traffic signal, and for 

different levels of traffic congestion, as was done in the case of deterministic signal timings (Ala 

et al., 2016; Yang et al., 2016; Yang et al.).  
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