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ABSTRACT 

Bike is a promising, human-powered and emission-free transportation mode that is being 
increasingly advocated as a sustainable mode of transportation due to its significant positive 
impacts on congestion and the environment. Cities in the United States have experienced a rapid 
increase in bicycle ridership over the past decade. However, despite the growing popularity of 
bicycles for short-distance commuting and even for mid-distance recreational trips, researchers 
have generally ignored the investigation of bicycle traffic flow dynamics. Due to the shared space 
and frequent interactions among heterogeneous road users, bicycle flow dynamics should be 
evaluated to determine the tendency of lateral dispersion and its effects on traffic efficiency and 
safety. Therefore, this research effort proposes to model bicyclist longitudinal motion while 
accounting for bicycle interactions using vehicular traffic flow techniques. From the comparison 
of different states of motion for these two transport modes, we assumed there is no major difference 
between vehicular and bicyclist traffic characteristics. The study revamps the Fadhloun-Rakha car-
following model (1) previously developed by the research team to make it representative of bicycle 
traffic flow dynamics. The possibility of capturing cyclists’ behaviors by revamping certain 
aspects of existing car-following models is investigated. Accordingly, 33 participants were 
recruited to ride the bike simulator and drive the car simulator simultaneously. The participants 
were recruited to operate a bike-simulator in order to test the proposed model under realistic traffic 
conditions and verify that the output of the proposed model formulation remains valid when 
bicyclists are operating under realistic traffic conditions. Both simulators were integrated together, 
and each participant was aware of the location of another participant in the simulation interval. Six 
scenarios based on the initial position of the bike and car were developed. Based on the collected 
data, the Fadhloun-Rakha model was validated to develop a good descriptor for speed, acceleration 
and deceleration behaviors. It means that,  driver’s variability, perception and control inaccuracies 
and errors are captured. Furthermore, speed and acceleration profiles that are consistent with 
empirical data are drawn to validate FR model under driving simulation environment. A reliable 
sample including 100 model parameters values was selected. Root Mean Square Error (RMSE) for 
the mentioned sample was obtained, and the smallest RMSE in each scenario was identified. Using 
the obtained RMSEs, the speed and acceleration trajectories for the smallest RMSE in each 
scenario were drawn. Eventually, the optimal values of the model parameters (a,b,d) in each 
scenario were specified. 

Key words: Longitudinal motion, Bicyclists, Bicycle traffic flow dynamics, Bike Simulator (BS.), 
Traffic efficiency and safety 
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1. INTRODUCTION  

The last decade has seen cycling emerge as a sustainable mode of transportation with 
growing popularity among both users and governments. As cities have invested in non-motorized 
transportation infrastructure, bicycling has become a meaningful alternative mode of 
transportation for those commuting to activities such as school, work, shopping, and recreation ( 
Pucher and Buehler, 2016). Bikes improve other modes of transportation by reducing traffic 
congestion, emissions, pollution, and delays in central downtown areas. They also connect more 
people to public transportation and provide a low-cost mode of transportation that requires minimal 
federal investment. For these reasons, the popularity of bike commuting, bike-sharing systems, 
and electric bikes in general has increased the desirability of safe and efficient bicycle 
infrastructure like protected bike lanes. According to one questionnaire exploring bicycle usage 
patterns in the United States, 47% of Americans say they would be more likely to ride a bike if 
pathways were physically separated from motor vehicles, 52.4% of Americans worry about being 
hit by a motor vehicle when riding a bicycle, and only 0.6% percent of American employees 
include biking in their commute to work (People for bikes participation study, 2016).  

Despite the urgent need to develop models and planning techniques for bicycle traffic 
operation, traffic researchers have neglected the traffic flow dynamics of bicycles relative to 
vehicular traffic flow. The observed gap between vehicular and bicycle traffic flow dynamic 
models can be justified by the scarcity of naturalistic and experimental cycling data. Using two 
naturalistic cycling datasets in this study is one of the important, heuristically-added values of this 
research. 

Our research aims to provide a comprehensive investigation of the traffic flow dynamics 
of bicycles. The research will develop a model that captures the characteristics of the longitudinal 
motion of bicyclists while accounting for their interactions and the variability of their behavior. It 
is worth mentioning that this study hypothesizes that there are significant similarities between car-
following behavior and bicycle-following behavior and therefore applies vehicular traffic flow 
modeling techniques that more effectively simulate bicyclists’ behavior. This approach is based 
on the assumption that there are significant similarities between the traffic flow dynamics of 
bicycles and cars. The assumption is partly justified by the fact that existing cycling data comes 
from single-file ring-road experiments in which overtaking was not allowed. The research group’s 
previous study (Fadhloun and Rakha, 2020) presented the performance of a new car-following 
model using a naturalistic driving dataset. The proposed model is able to explicitly model the 
driver throttle and brake pedal input while allowing for shorter than steady-state following 
distances when following faster leading vehicles. Upon completion, the performance of this model 
will be assessed by comparing its predictive power with that of models specifically designed for 
bicyclist behavior simulation. To achieve this goal, the research team will recruit participants to 
operate a Bike Simulator (BS) under realistic traffic conditions. The interactions between bicyclists 
and cars are investigated through the BS. The collected simulator data is used to further 
investigation and confirm the validity of the proposed model. 
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1.1. Problem Statement 

There is growing interest in bicycle riding for short-distance commuting, recreation, and 
fitness purposes. Bicycles are also increasingly recognized as an environmentally conscious form 
of urban transportation (Liu et al, 2013). Despite the growing popularity of bicycles as a 
sustainable transport mode, researchers have generally ignored investigations of its traffic flow 
dynamics. Evaluation of its traffic flow dynamics can be performed by examining bicycle 
interactions using vehicular traffic flow techniques. Accordingly, the Fadhloun-Rakha (FR) 
acceleration-based car-following model previously developed by the research team will be used to 
determine bicycle traffic flow dynamics. The FR car-following model uses very similar collision-
avoidance strategies to ensure safe following distances between vehicles. It can capture vehicle 
dynamics, the human-in-the-loop, and the randomness associated with human driving behavior in 
the form of a seamless structure. Assuming no major differences between vehicular and bicyclist 
traffic characteristics, the FR car-following model (as a vehicular traffic flow modeling technique) 
is considered the basic model. Our research will then attempt to revamp the bicyclist longitudinal 
motion in the form of the FR car-following model and simulate bicyclist behavior. Bicyclist 
longitudinal motion is achieved through the re-parameterization of vehicle-related input variables 
along with the potential integration of necessary new parameters such as the characteristics and 
fundamentals of the bicycle/bicyclist system. As the last step, adequacy of the proposed 
formulation as a descriptor of bicycle longitudinal motion is assessed by estimating its quality of 
fit using an experimental collected dataset.  

1.2. Goal 

This research models bicyclist longitudinal motion while accounting for interactions with 
other vehicles using vehicular traffic flow techniques. There is a need for methods that provide a 
better understanding of bicyclists’ behavior and preferences on currently unavailable and unknown 
bicycle facilities. Different survey methods have been used to study bicyclists’ behavior, 
experiences, and preferences, all ranging from verbally described facilities to surveys including 
images and videos (Nazemi et al, 2021). Bicyclist longitudinal motion has not been modeled in 
previous studies. The main achievement of this research is the modeling of bicyclist longitudinal 
motion while accounting for bicycle interactions using vehicular traffic flow techniques. The 
second achievement is revamping an appropriate car-following model previously developed by the 
research team to make it representative of bicycle traffic flow dynamics. The third achievement is 
using an accurate, naturalistic dataset to develop a good descriptor for bicycle speed, acceleration, 
and deceleration behavior. Finally, the last achievement is using the BS to provide a realistic 
environment for bicyclists (Jiang et al, 2017). The BS determines the bicyclist’s behavior under 
different scenarios, and the interaction of the car-following model with bicyclists and the proximity 
of the behavior of car drivers and bicyclists appear through the BS.  
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2. LITERATURE REVIEW 

Our research is multi-faceted, covering "bicyclist’s behavior and bike flow dynamics," 
"bicycle interactions using vehicular traffic flow techniques," "BS applications studies,” and 
“usage of car-following models for bicyclists." These topics are addressed in this section. 

2.1. Bicyclist’s behavior and bike flow dynamics 

 (Gavrilidou et al, 2019) defined the cyclist's operational level in terms of decision-making 
factors, arguing that it consists of two intertwined processes, a mental one and a physical one. They 
also argued that it consists of two intertwined processes, a mental and a physical process. The 
mental process refers to path choices made within a route and the physical process refers to the 
bicycle control dynamics through pedaling and steering. A novel two-layer framework was 
proposed where each layer captured the tasks of one of the processes within the operational level. 
A discrete choice theory was proposed to model each layer, and mathematical models were 
estimated for the two layers using cyclist trajectory data collected at a signalized intersection in 
Amsterdam, the Netherlands.  

Unsafe bicyclist-overtaking behavior based on social or psychological factors was studied 
by (Goddard, 2020). Their research explored the impact of implicit and explicit attitudes on drivers' 
behavior in interactions with bicyclists. In a driving simulator, various objective measures of safety 
(e.g., speed, passing distance, crash occurrence) were collected in an overtaking scenario. 
Participants' self-reported attitudes about driving and bicyclists were collected via a survey 
instrument and an online test of subconscious attitudes called an “Implicit Association Test.” The 
results provided potential avenues for infrastructure and education interventions to improve 
pedestrian and bicyclist safety. One of the best models to determine bicyclist’s behavior is cellular 
automata. A cellular automaton consists of a regular grid of cells, each in one of a finite number 
of states.  

An improved multi-value cellular automata that modeled heterogeneous bicycle traffic 
flow by taking the higher maximum speed of electric bicycles was developed by (Jin et al, 2015). 
The study proposed an improved multi-value cellular automata (MCA) model that introduces the 
maximum speeds of two and three cells(s) for Regular Bicycles (RBS) or Electric Bicycles (EBS). 
The numerical simulation results and fundamental diagrams for bicycle traffic were analyzed and 
discussed. Three parameters consisting of the slowdown probability, the percentage of EBS, and 
the number of bicycle lanes were analyzed in both the deterministic and stochastic cases. The 
results determined that the proposed model matches the field bicycle data better than previous 
models. Understanding bicyclist’s behaviors on real-world roads has been a pertinent topic in 
transportation research for some time, but the modeling and simulation of heterogeneous bicycle 
traffic flow is becoming increasingly important for bicycle path planning, management, and 
operation.  

Investigating bicycle flow dynamics on wide roads by using a wide track model was 
proposed by (Guo et al, 2019). By studying the weight density of the radial locations of cyclists, 
their research argued that bicycle flow rates remain nearly constant across a wide range of 
densities. This behavior arises from the formation of additional lanes with the increase of global 
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density. The extra lanes prevent the longitudinal density from increasing as quickly as in a single-
file bicycle flow. When the density is larger than 0.5 bicycles/m2, the flow rate begins to decrease, 
and stop-and-go traffic emerges (Guo et al, 2019).  

Studies on bicyclist’s behaviors at signalized intersections based on real-world data were 
conducted by (Twaddle, 2017). Behavioral models were calibrated and validated in a microscopic 
traffic simulation. Video data were collected at four intersections that differed from one another in 
their geometry and traffic volume. Automated video analysis was used to extract trajectories, 
which quantify the spatial progression of road users in a subset of the video data. Distortion in the 
trajectory data resulting from a wide-angle lens was corrected, and the maneuver (right turn, left 
turn or traveling straight across the intersection) of each bicyclist was identified. The resulting 
behavioral models were integrated with the microscopic traffic simulation software SUMO to 
evaluate the overall ability of the models to realistically simulate bicycle traffic. Results indicated 
that the proposed integrated modeling approach is capable of realistically simulating the flexible 
behavior of bicyclists at signalized intersections. 

As the number of bicyclists in urban areas continues to increase, the need to realistically 
model the movement and interactions of bicyclists in mixed urban traffic is rapidly gaining 
importance. In response to this need, (Twaddle et al, 2014) modeled and evaluated bicyclist 
behavior on “uninfluenced operational and tactical behavior” and “influenced operational and 
tactical behavior” levels. The ability to model bicyclist behavior on each of these levels was 
evaluated based on the results of an extensive literature review. The results of the assessment 
indicated that it is possible to model the majority of bicyclist’s behaviors on an “uninfluenced 
operational and tactical behavior” level. It is worth mentioning that the uninfluenced and 
influenced tactical behaviors of bicyclists are important for accurate modeling as bicycle behavior 
is less constrained by road markings and traffic regulations. 

Some studies have evaluated complex patterns of bicycling behavior, such as those 
conducted by (Thigpen et al, 2019) and (Thigpen, 2019). They considered the readiness for 
bicycling. The added-value of a categorization of bicyclists based on the stages of change feature 
of the Trans theoretical Model (TTM) was presented and examined how this new categorization 
can contribute unique insights for practice through novel behavioral information. Spatial statistical 
techniques were conducted using survey data from a sample of 2398 individuals from three 
medium-sized Canadian cities were presented. The results suggested that categorizing people as a 
function of readiness for change allows for populations to be characterized by their likelihood of 
being beneficially impacted by policies that support bicycling.  

Another study was conducted by (Chuang, 2013) that scrutinized how motorized vehicle-
related factors, road-related factors, and bicyclist-related factors influenced motorists’ decisions 
about initial passing distances and bicyclists’ behaviors after the motorists started to pass. A quasi-
naturalistic riding method was used for thirty-four participating bicyclists riding an instrumented 
bicycle in real traffic.  

Another study included 1,380 incidents of left-side passing by motorists. It revealed the 
main factors influencing motorists’ initial passing distance and bicyclists’ positions (lateral 
distance from the passing motorists), wheel angle, and speed control behaviors while the motorists 
passed. They also found that bicyclists avoided road surface hazards and reduced initial passing 
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distances that the motorists had chosen (Piatkowski et al, 2017). Furthermore, the presence of 
behavioral norms while riding a bicycle in mixed-traffic conditions was examined. They studied 
car and bicycle on-street interactions by asking bicyclists to consider how they would respond 
when driving a car while encountering a bicyclist behaving in ways that might be perceived as 
reckless, rude, and/or illegal.  

The behavior of bicyclists when they were biking and using instrumental devices such as 
mobiles, MP3 players etc. was studied by (Nygårdhs et al, 2018). The aims of this study were to 
explore how cyclists adapt when texting and listening to music in a complex urban environment 
and whether they compensate sufficiently to maintain safe traffic behavior. Forty-one cyclists 
participated in a semi-controlled study, using their own bikes and smartphones in real traffic. They 
were equipped with eye-tracking glasses and traveled two laps, completing a total of 6 km divided 
into six segments. The results showed that listening to music while cycling did not affect workload, 
speed, SMS interaction or attention.  

This section examined studies evaluating bicyclist path choice behaviors (path planning, 
management, and operation), bicycle control dynamics, bicyclist overtaking behaviors in different 
real-world segments such intersections, and the adaptation of cyclist’s behaviors when they are 
not limited to a certain set of behaviors. To the best of the authors' knowledge, simulations bicyclist 
longitudinal motions along specific segments were not performed in prior studies. This research 
proposes the bicyclist longitudinal motion while accounting for bicycle interactions using 
vehicular traffic flow techniques and considers the behavioral and physical aspects of bike motion 
on different roads. 
 
 

2.2. Bicycle interactions using vehicular traffic flow techniques 

There is a need to better understand bicyclists’ interactions with vehicles and to build 
models and to evaluate multimodal transportation infrastructure with respect to cycling safety, 
accessibility, and other aspects. This section reviews the previous studies in terms of bicyclists and 
other road user’s interaction under different traffic conditions based on traffic flow techniques.  

A framework for modeling the bicyclist’s comfort zone and interactions was provided by 
(Lee et al, 2020). Unlike the driver’s comfort zone, little was previously known about that of the 
cyclist. They modeled the braking and steering maneuvers of cyclists by using obstacle avoidance 
data. Their results determined that when cyclists avoid obstacles by braking, they kept a constant 
rate of deceleration; as their speed increased, they started to break earlier, farther from the obstacle, 
while maintaining a nearly constant time to collision zone. When cyclists avoid obstacles by 
steering, they maintain a constant distance from the object, independent of speed. Overall, the 
higher the speed, the more the steering maneuvers were temporally delayed compared to braking 
maneuvers.  

Another way to address cyclist’s interactions with their surrounding environment is to 
construct bike-friendly environments. Bike-friendly environments can be evaluated in such a way 
whether associations between environmental characteristics and cycling are context-specific. 
Furthermore, bike-friendly environments may improve natural environment characteristics’ 
contribution to cycling duration. The viability of constructing bike-friendly environments to 
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increase the use of bicycles as a significant transportation mode was investigated by (Joo and  Oh, 
2013). Evaluating the performance of bicycling environments remains a significant technical 
challenge for researchers, and this study proposed a novel method of doing so that evaluates 
bicycle performance in terms of safety and mobility. An Instrumented Probe Bicycle (IPB) 
equipped with a Global Positioning Systems (GPS) receiver, accelerometer, and gyro sensor was 
used to develop the proposed method. The IPB provides useful bicycle maneuvering data for 
identifying longitudinal, lateral, and vertical maneuverings of the bicycle, which are affected by 
environmental factors such as heavy vehicle volume, surface conditions, grade, crossings, humps, 
and curbs.  

Another way to monitor the interaction of bicyclists and motorized vehicles was explored 
by utilizing  video data (Twaddle et al, 2014) collected at three busy urban intersections in Munich, 
Germany. In order to analyze the interaction of bicyclists and motorized vehicles through traffic 
flow techniques, large volumes of motor vehicles, bicycles, and pedestrians at intersections were 
tracked. The trajectories of cars, bicycles, or pedestrians were monitored. Then, their interaction 
was classified based on their dynamic characteristics. A classified structure for the maneuvers of 
different road users (as important interactions between cyclists and other vehicles) was also 
presented.  

(Luo et al, 2013)proposed a cellular automata model to simulate heterogeneous traffic on 
urban roads. In the proposed model, the researchers adopted a novel occupancy rule to capture the 
complex interactions between cars and bicycles and consider the variable lateral distances of mixed 
vehicular traffic. Researchers devised fundamental diagrams under different bicycle densities 
before discussing the bicycles’ spilling behavior. They then modeled the interference 
transformation from friction state to block state to reflect the interference of a bicycle on a car. 
Their results indicated that the constant and fixed occupancy rule adopted in the study might lead 
to overestimation of car flux in heterogeneous traffic flows with different bicycle densities. 

The relevant factors impacting lateral spacing between bicycles and vehicles in mixed 
urban traffic (passing distance, PD) and their resulting effect on a bicyclists’ comfort were 
examined based on a study of six sites performed by(Apasnore et al, 2017). The average distance 
of bicycles from the curb and parked vehicles, motor vehicle speed, lane width, and bicycle 
position from adjacent curb edge line, whiles inversely correlated to ambient traffic density and 
bicycle speed and Ambient Traffic Density (ATD), were found to be the most important factors to 
a Bicyclists’ Comfort Perception (BCP). 

The interaction of bicyclists and motor vehicle drivers was studied by (Klieger and Savage, 
2020) and (Silva et al, 2019). They evaluated how well unprotected bicycle lanes function as 
dedicated travel lanes for bicyclists. Two types of bicycle lanes were included in this study, 
including on-street bicycle lanes demarcated with painted lines on the vehicular roadway and 
bicycle lanes at-grade with, and immediately adjacent to, the pedestrian sidewalk. More 
specifically, the research focused on how people behave and interact on street segments with these 
facilities in place.  
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2.3.  BS Applications Studies 

Various types of vehicle simulators – such as automobile, bicycle, flight, tank and ship 
simulators – have been developed and widely used for testing the design evaluation of 
environments, training for driving, entertainment, and so on (Guiso, 1995). Even though many 
studies have been conducted regarding various driving simulators, few are related to two-wheeled, 
human-powered simulators like a BS. A BS consists of a stationary bike, a monitor, analyzing 
software, and a VR-Design platform. It visualizes biking behavior on different roads in a realistic 
environment. A BS also includes of a frame, clamp to hold the bicycle securely, a roller that presses 
up against the rear wheel, and a mechanism that provides resistance when the pedals are turned 
(Curtis, 2014).  

For bicycle dynamics calculation and real-time simulation, it is necessary to identify the 
control inputs from both the rider and the virtual environment (Shin and Lee, 2002). The virtual 
environments, such as the ground configuration and condition, can be generated and provided by 
a visual system. The steering, pedaling and braking torques can be measured directly by using 
torque sensors attached to the corresponding components. Given the significant application of BSs 
in previously published studies and the utility of applying simulators as an alternative to real 
bicycles, this study was designed to synthesize the lessons learned from existing studies that 
quantified the application of BSs. We implemented a scoping review to identify, screen, and 
review the existing literature on BS applications. The results of which we hope can assist 
researchers, policy makers, and practitioners with the selection of appropriate evaluation methods 
based on their objectives. This study can be a starting point for other researchers to explore more 
frequent objectives when applying BSs and present new studies with additional innovations.  

After reviewing the literature, five approaches were identified: application of a BS to 
suggest a mathematical dynamic model for bicycle stability, incorporation of a BS with virtual 
reality (VR) technology, application of a BS in safety promotion studies, installing special sensors 
on the BS to measure specific datasets, and the application of a BS in medicine, psychology, sports 
management, and other branches of science. 
 

2.4. Applications of BS in Modeling Bicycle Stability 

A simulator is designed to create a virtual model of a real-life situation for the purpose of 
instruction or experiment in a laboratory environment.  Studies that generate different prototypes 
for a bicycle product using a systematic concept generation method, describe the use of an 
instrumented bicycle and its computational model, and provide mathematical models for bicycle 
stability are reviewed in this section. Methods for data collection, analysis, modeling, and 
simulation of performance parameters by BSs were developed or evaluated are also discussed. BS 
is and efficient way to scrutinize the interaction of bicyclists with other road users in a real-world 
simulation environment. Hereupon, this section reviews the interaction of bike and motorized 
vehicles in terms of bike stability, and lateral and longitudinal movements. The degree-of-freedom 
(DOF) of BS affects its stability. The higher the DOF of the BS, the more it can obtain acceptable 
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results regarding the participant's behavior during interaction with motor vehicles. Hereupon, this 
section reviews previous studies in terms of conceptual designing of the BSs. 

Scholars e.g., (Abagnale et al, 2016), (Arunachalam and Rajesh, 2014), (Beckmann et al, 
2015), (Dahmen et al, 2011), (Escalona et al, 2018), and (Englund et al, 2016) proposed a series 
of new dynamic models and mathematical equations that use a BS for bike stability. A new 
dynamic model consisting of an electrical motor in the central position that, by means of a bevel 
gear, transmits the torque to the central hub to investigate the tracking errors was proposed by 
(Abagnale et al,2016). (Arunachalam & Rajesh, 2014) suggested a mathematical equation for 
investigating the stability of foldable bicycles. A method of mixed reality extended by modern 
industrial technologies to allow natural interaction with virtual prototypes of the BSs was proposed 
by (Beckmann-Dobrev et al, 2015). A mathematical model was implemented by (Dahmen et al, 
2011) for simulating rides on real courses, providing similar quality measures when comparing 
field and simulator measurements. (Escalona et al, 2018) proposed the mathematical equations to 
generate a simple computer graphics animation of bicycle riding. In another study, a mathematical 
model was suggested by (He et al (a), 2005) to investigate the bicyclist’s stability and vibration 
behavior. A new dynamic model was suggested by (He et al (b), 2005) for BSs consisting of motion 
generation, and force reaction, dynamics simulation, and visual/audio systems. In addition to 
previous studies, a new rehabilitation training system (consisting of a dynamic model) was 
developed by (Jeong et al, 2005) to improve equilibrium sense control by combining virtual reality 
technology with a fixed exercise bicycle. A new dynamic model to validate the integrated power-
assisted BS was proposed by (Kakutani & Furusho, 2004). They suggested an integrated prototype 
that was able to investigate power-assisted bicycle. (Kim et al, 2017) developed a heuristic 
dynamic model to evaluate the user experience of virtual systems. They modeled the user 
experience of virtual bikes by VR technology. In another research project, (Kooijman et al, 2008) 
suggested a model study to consider many physical aspects of a real bicycle such as the flexibility 
of the frame and wheels, play in the bearings, and precise tire characteristics. One of the first 
proposed BSs was introduced by (Kwon et al, 2001) KAIST Interactive BS (Korean BS) consists 
of a bicycle, a Stewart platform, magnetorheological handle, pedal, resistance system to generate 
motion feelings, real-time visual simulator, and a projection system, sub-controllers, and an 
integrating control network. A dynamic model that couples the bicycle roll and steer in a realistic 
manner was proposed by (Lee et al, 2017) and it also allowed studying the effect of balance on the 
rider’s higher-level cognitive decisions. (Schwab & Recuero, 2013) described and used a BS 
prototype that can help understand the synergy among the parts intervening in the active 
stabilization process in cycling. An affordable BS prototype with proper longitudinal and lateral 
stability (Snapika et al, 2018) that simulates the form of indoor cycling was presented. To increase 
the efficiency of BSs, new methods were proposed by the following researchers. In all reviewed 
methods, a particular structure or architecture is presented that can increase the efficiency of the 
BS. This issue is clearly discussed in studies such as (Englund et al, 2016): (Ginters et al, 2014): 
(Jamin et al, 2019(. (Shin and Lee, 2002) proposed the control inputs from the rider as well as the 
virtual environments for the calculation of bicycle dynamics in a bicycle simulator. The impression 
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of geometry and road surface characteristics – such as radius of curvature, road adhesion, and 
unevenness of road profile – was simulated by (Shoman & Imine, 2020), based on which a dynamic 
model was developed. Finally, a 6-degrees-of-freedom (DOF) platform that is controlled by linear 
actuators and a microcontroller was proposed by (Yap et al, 2016), who successfully formulated 
the kinematics equation. The aforementioned studies propose different physical concepts of the 
BS. In each of these studies, the degree of freedom and dynamic features of a BS have been 
changed to suggest the new structure for the BS.   

After reviewing the aforementioned studies, we conclude that a BS can be used to model 
the physical motions of the human body. Therefore, spatial geometric equations have been defined 
to model the stability of bicyclists. To sum up, the first application of the BS is limited to the 
process of presenting such models or mathematical equations. 

 
 

2.5. Incorporation of BS with Virtual Reality (VR) Technology 

Virtual reality (VR) refers to a computer-generated simulation in which a person can 
interact with an artificial three-dimensional environment using electronic devices with a screen or 
gloves fitted with sensors (Mitchell, 2020). VR can be a 360-degree immersive experience, where 
computer-generated graphics help create things as close to reality as possible. Many researchers 
have attempted to integrate BSs with the VR technology to gain more realistic data. VR’s most 
immediately recognizable component is the Head-mounted Display (HMD), which can be applied 
to simulate the performance of bike riders in different situations.  

VR technology was used by (Bogacz et al, 2020) to contribute to a better understanding of 
the implications of the choice of the experimental setup by comparing the cycling behavior 
between two groups of participants. The first group controlled the maneuvers using a keyboard 
and the other group rode an instrumented bicycle. Some studies examined unique applications of 
a BS&VRT (Bottone et al, 2015):  (Carraro et al, 1998):  (Kikuchi, 2011):  (Kakutani, 2004):  
(Katsigiannis et al, 2019):  (Al-Kefagy, 2019):  (Padmini et al, 2019): (Schulzyk et al, 2009(. The 
two degree of freedom (2-DOF) mechanism on a dynamic platform driven by changing the cable 
length and its application to VR for bicyclists in virtual environments was presented by (Chen et 
al, 2007) Their prototype could interact between the bicycle and VR system and integrate exercise 
with entertainment. (Dahmen & Saupe, 2009) concentrated on the simulation of endurance sports 
with an emphasis on competitive cycling with BS&VRT.  The goal of Gao et al.’s  work was to 
provide a simulator system that enables race bikers to improve their performance in training (Gao 
et al, 2005(. In another study, (Hernández–Melgarejo et al, 2020) integrated physical VR and 
control behavior systems to compose a virtual bicycle simulator. They designed and implemented 
a VR bicycle system based on a functional-based mechatronic design approach. An immersive 
bicycle simulation platform and VR technology for several applications in the areas of 
biomechanics, sports, traffic education, road safety, and entertainment was proposed by (Herpers 
et al, 2009) Their prototype consists of special immersive visualization systems to simulate biking 
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in a real-world environment. All the aforementioned studies were tested in a laboratory 
environment. 

The following studies are instances of new integrated systems that have been suggested to 
promote the performance of BS&VRT. Studies like (Horne et al, 2018): (Jia et al, 2006) proposed 
new techniques to improve the performance of a BS&VRT. A calibration procedure was proposed 
by Horne et al. that uses general equations and techniques to calibrate speed measurements and 
improve the consistency of experimental data. (Jia et al, 2006) evaluated the role of the human-
computer interaction system as the key technology of a virtual bicycle simulator. 

Researchers, e.g., (Keler et al, 2020) and (Nazemi et al, 2018)  used BS&VRT to evaluate 
novel traffic control strategies on existing transport infrastructure depicted in VR environments. 
In addition, (Nazemi et al, 2018) used BS&VRT to evaluate the effects of environmental properties 
and road infrastructure design on cyclists’ perceived safety. This study investigated the 
combination of immersive VR and an instrumented cycling simulator for in-depth behavioral 
studies of cyclists. Researchers, e.g., (Ouden, 2011) used a BS for physical rehabilitation purposes. 
BS&VRT has been used to train children and help them get used to being on a bicycle. Children's 
cycling has been studied less than adult cycling. Therefore, additional studies should be conducted 
because children have been considered as one of the groups for whom education can positively 
affect their behavior in adulthood.    

An example of a well-done study regarding the bicyclists' behavior on different pavements 
was performed by (Rakhmatov et al, 2018) They designed a data-collection bike that captures the 
vibrations induced at the handlebar and the cycling velocity for different tire pressures. The level 
of tire pressure, the weight of bicyclists, and the role of pavement in the reaction of bicyclists was 
investigated. By studying the behavior of cyclists, (Schramka et al, 2017) investigated how 
different street design configurations and traffic levels impact perceived cycling stress levels, 
cognitive reactions, and mobility behavior. The role of environmental elements to investigate how 
cyclists adapt their behavior (e.g., speed, safety, gaps, steering, etc.) was evaluated by (Shoman & 
Imine, 2021) They adjusted their riding practices as they interacted with other road users and 
anticipated risks in hazardous riding situations. In another study, (Ullmann et al, 2020) used the 
integration of BS&VRT to provide rare qualitative factors (such as stress, perception of time, and 
attractiveness of the environment). They utilized an audiovisual VR bicycle simulator to allow the 
user to ride in a virtual urban environment. The aforementioned studies were conducted with adult 
cyclists. Finally, the exercise and entertainment purposes of a BS&VRT were studied by (Tang et 
al, 2018) and (Yap et al, 2018) who investigated the entertainment role of BSs.  

Overall, the number of studies regarding incorporating VR and BSs has risen in recent 
decades, reflecting increasing interest by researchers. Incorporating VR and BS provides a fairly 
realistic environment for the participants of the research, and they can efficiently adapt to the 
simulated environment when riding a BS. Riding a BS which is integrated with VR technology 
may improve the BS participant’s understanding regarding the simulated environment and it 
effects positively on the bicyclist’s behavior in interaction time intervals with other motorized 
vehicles.  
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2.6. Application of BS in Safety Promotion Studies  

The popularity of biking has drawn researchers’ attention to finding methods for protecting 
bicyclists on public roads. Bicyclists (and pedestrians) are frequently classified as “vulnerable road 
users.” The biking community, however, is not comfortable regarding the safety of these two 
groups (Cynecki, 2012). Bicyclists are susceptible to serious injuries, and special attention should 
be paid to the safety of this group (Ragland, 2012). The elevated risk of injury to bicyclists when 
they encounter motor vehicles makes it important to identify and implement strategies to protect 
cyclists on the road. There is some evidence that bicycling has increased in recent years (Jacobsen 
et al, 2009). However, even with widespread encouragement, many will be deterred from biking 
if they do not feel safe.   

When a crash occurs between a vehicle and a bike, it is the cyclist who is most likely to be 
injured. By law, bicycles on the roadway are vehicles with the same rights and responsibilities as 
motorized vehicles. Over 1,000 people were killed in bicycle crashes in 2018 and over 300,000 
ended up in the emergency room. In the U.S. in 2017, over eight times more men were killed in 
bicycle crashes than women (Grover, 2020). One notable application of BSs is in safety promotion 
studies. Researchers have studied the interaction of bicycles with other vehicle types, plans to 
increase bicyclist’s safety, and the most hazardous situations for bicyclists. Different cyclist’s 
behaviors and cyclist-enhanced safety schemes can be evaluated when they interact with the road 
and other vehicle types. “The role of bicyclists under different conditions” and “the role of the 
road and its characteristics” are two critical properties involved in increasing or decreasing cyclist 
safety.  

The following studies investigated the role of the bicyclist in the occurrence of crashes. A 
novel approach consisting of a unique bicycle simulator equipped with sensors capable of 
capturing the behavior of bicyclists was suggested by (Englund et al, 2016) to model the visual 
distraction of bicyclists. (Ghodrat Abadi et al, 2019) suggested a high-fidelity full-scale bicycling 
simulator that examined the interaction of bicyclists and trucks near Commercial Vehicle Loading 
Zones (CVLZ) in urban areas. They investigated the influence of engineering treatments on 
bicyclist performance. 

Additionally, a factorial design with three levels of pavement markings (white lane 
marking, solid green, and dashed green), two levels of signage (no signs and warning signs), and 
three levels of truck maneuvers (no truck, parked trucked, and exiting truck) was developed by 
(Kaß et al, 2020) evaluated and investigated cyclists’ behavior during dynamically evolving 
interactions. Furthermore, they measured the dynamic behavior patterns. The research focused on 
external human-machine interface (eHMI) as a communication interface of automated vehicles.  

Researchers such as (Lindström et al, 2019) have evaluated how radar sensors and 
technologies common in automotive vehicles can be transferred for use on bicycles. A bicycle 
simulator was used for testing and evaluation. Moreover, high-risk scenarios and requirements 
were identified, followed by identified design challenges and design activities. To facilitate road 
safety for children, (Matviienko et al, 2018) explored the use of multimodal warning signals to 
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increase their awareness and prime action in critical situations. A BS linked to these signals and 
the results showed that the participants spent significantly more time perceiving visual than 
auditory cues. A better understanding of bicyclists’ perceived safety and their preferences for 
currently unavailable and/or unknown facilities was studied by (Nazemi, 2020) who used different 
survey methods ranging from verbal descriptions of facilities to surveys including images and 
videos. There is evidence that some aspects of cyclist performance when interacting with the road 
environment can be investigated by using a BS. (O’Hern et al, 2017) concentrated on the cyclist 
spatial position measures to investigate the bicyclists’ interaction. They assessed the validity of 
the participants’ performance using a BS compared to riding on road. In line with former research, 
(O’Hern et al, 2018) examined how bicycle lane width and perceptual countermeasures can 
influence cyclist speed and position. Researchers such as (Powell, 2017) concentrated on the 
injuries caused by bicyclists and motor vehicle crashes. They used a particular BS to provide a 
virtual environment and reduce crashes by safely investigating the interaction between bicycle 
riders and traffic, particularly when bicyclists were crossing streets. (Sawitzky et al, 2020) studied 
the effects of new infrastructural concepts and technologies, such as a head-up display (HUD) for 
cyclists’ potential crash possibilities brought by automated vehicles, and smart, connected traffic, 
on actual cyclist road safety. Some researchers studied the hazard of biking on sidewalks. (Suzuki, 
2013) is a good example, concentrating on a particular BS that is available for analysis of the safety 
and influence on other transport modes.  

Using BSs and VR technology for assessing bicyclists' safety was studied by (Tsuboi et al, 
2018). They proposed methods to improve the awareness of bicycle riding safety by experiencing 
virtual accidents in a virtual space. The study helped the participants learn desirable and safe 
bicycle riding behavior. The role of bicyclists in injury or fatal crashes was assessed by (Warner 
et al, 2017). They concentrated on the right-hook crash, which is a crash between a right-turning 
motor vehicle and an adjacent by-moving bicycle. They evaluated driver behavior in collisions 
that occur during the latter green phase (the second portion of the green signal phase, after the 
initial vehicle queue has cleared) at signalized intersections with a bicycle lane and a shared right-
turn lane. 

Researchers like (Brown et al, 2017) and (Yamaguchi et al, 2018) investigated the role of 
the road and its characteristics on bicyclists’ crashes. Alternative pavement markings were 
investigated by Brown et al. for bicycle wayfinding and proper bicycle placement at signalized 
intersections. Yamaguchi et al. proposed an innovative method to detect road hazards using sensors 
attached to a bicycle. The built-in sensors send the speed and front-wheel angle information to the 
control unit. The proposed system allows for dangerous situations to be easily and repeatedly 
created with no danger to the bicyclists. 

Overall, in many studies a BS was used to simulate the behavior of bike riders under 
different environmental conditions and on different road types. As explained in this section, the 
application of BS in safety-related studies improved the adaptability of bicyclists in interaction 
time intervals. Furthermore, BS as an efficient instrument can be utilized in safety-related studies 
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to investigate the bicyclist’s lateral and longitudinal movements which is not easy to measure in 
the real world. 
   

2.7. Installing Various Sensors on the BS to Record Different 
Characteristics 

The studies in this section installed specific sensors on the BS to record characteristics of 
the participant's body. (Alemeida et al, 2020), (Caro et al, 2015), (Dialynas et al, 2019), (Herpers 
et al, 2011), and (Rittenbruch et al, 2020) present the most important research conducted in this 
area. (Alemeida et al, 2020) presented a virtual BS (SimBike) that used non-conventional motor, 
sensors, sensorimotor devices to provide greater user involvement and comfort. They used special 
sensors to investigate how the devices in SimBike contributed to the user experience in the virtual 
simulator, including the level of immersion, realism, and cyber-sickness symptoms. The results 
suggested improvements to make the simulator more suitable for all types of users, regardless of 
characteristics such as weight and height. The role of the different sensory information available 
was determined by (Caro et al, 2015). They concentrated on the mechanisms of perception of the 
natural speed which affect the adopted speed. Natural speed defines the speed limits of vehicles 
specified on  traffic signs while the adopted speed is defined as the adaptive speed of the driver 
during interaction with other road users. An experiment was carried out on a BS where three 
sensory datapoints were separately manipulated: the speed of the image, the resistance to pedaling, 
and the airflow. Based on this research, “airflow” had no effect. This indicator should be better 
evaluated by conducting more accurate models. A step-by-step guide (Dialynas et al, 2019) to 
building a BS was presented at TU Delft University, highlighting the mechanical and mechatronic 
aspects. They used special sensors in their proposed prototype to effectively simulate a mountain 
bike placed on top of rollers and later fitted with a haptic steering device. The FIVIS simulator 
system was constructed by (Herpers et al, 2011). It addressed the visual and acoustic cues as well 
as vestibular and physiological cues. Sensory feedback from skin, muscles, and joints was 
integrated within this VR visualization environment, allowing the BS to simulate otherwise 
dangerous traffic situations in a controlled laboratory environment. They developed a BS that was 
embedded into an immersive visualization environment, which provided visual cues to peripheral 
areas of the visual field of the trainee. A physical computing toolkit (Rittenbruch et al, 2020) was 
presented to support the rapid exploration and co-design of on-bicycle interfaces. Physical plug-
and-play interaction modules controlled by an orchestration interface allowed participants to 
explore different tangible and ambient interaction approaches on a BS. Results revealed how this 
toolkit can combine with a lightweight bicycle simulator and simulate hazards to evaluate different 
designs and elicit rich feedback. 

2.8. Usage of Car Following Models for Bicyclists 

Bicycle traffic operations have become increasingly important, yet have been largely 
ignored in the traffic flow community until recently. Some researchers hypothesized that there is 
no qualitative difference between vehicular and bicycle traffic flow dynamics, so the latter can be 
described by re-parameterized car following models, such as those tested by (Kurtc and Treiber, 
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2020). They reproduced bicycle experiments on a ring with an Intelligent-Driver model and 
compared its fit quality (calibration) and predictive power (validation) with that of a Necessary-
Deceleration-Model specifically designed for bike traffic. The results showed that there are similar 
quality metrics for both models, so the above hypothesis of a qualitative equivalence cannot be 
rejected. Follow-the-leader is one of the fundamental behaviors in bicycle traffic that describes the 
longitudinal interactions between two consecutive bicycles. It plays a predominant role in the 
development of micro-simulation models, safety evaluation, and the capacity estimation of bicycle 
infrastructure. To understand bicycle-following movements, previous studies have either adopted 
car-following models or developed specialized bicycle-following models. However, these models 
were not calibrated and validated in a unified configuration using empirical data derived from 
realistic cycling behaviors.  

(Xue et al, 2020) investigated the single-file dynamics of bicycle traffic from the 
perspective of car-following models. Using empirical datasets from a series of bicycle 
experiments, the proposed models were calibrated and validated. The results demonstrated that the 
assumptions, such as keeping a velocity-based distance from the leader, was a robust behavioral 
mechanism across all of the empirical datasets. The results could enhance the understanding of the 
behavioral dynamics of bicycle traffic, meanwhile providing deeper insights into the mechanisms 
of developing bicycle simulation models.  

In order to develop traffic modeling, it is necessary to consider adapting these models to 
bicycle traffic and thus benefit from all of the research efforts in the field of traffic theory. Since, 
the objective function of a driver or cyclist is to control the vehicle's speed and direction while 
maintaining his/her desired speed and avoiding accidents, it is likely that despite the difference in 
vehicle type, the driving logic and driver behavior will be similar. (Abdelaziz and Gang, 2014) 
presented three aspects of traffic vehicle science adapted to bicycle traffic: car-following models, 
the fundamental relationships of traffic flow, and the action point model. The results obtained 
using car-following models were compared to empirical data collected with global positioning 
system devices installed on a pair of cyclists in a following situation with no opportunity to 
overtake. The fundamental relationships were examined using data collected by video at a fixed 
location at a bike facility. The results indicated that car-following models, fundamental 
relationships, and the action point model all have the potential to reproduce real-world data for 
bicycle traffic.  
 

2.9.  Summary of Literature Review 

After reviewing the previous studies regarding the bicyclist traffic safety and interactions 
with vehicle traffic, it is clear that the proposed research effort will be the first of its kind to develop 
a dynamics-based model for the longitudinal motion of bicycles in both constrained and 
unconstrained conditions. Bicyclist behavior variability and bicyclists’ motions are modeled 
during our manuscript. Furthermore, previous studies that investigated bicycle-following behavior 
were based solely on ring-road experimental data, which is not typically reflective of bicycle 
riding. For that reason, our study involves testing a developed model using collected bike simulator 
data. This review showed that previous studies carry certain shortcomings, and further 
investigation is required for a reliable evaluation of bicyclist safety research. Future research is 
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also required to better understand and evaluate bicyclists’ motion while addressing the gaps in the 
existing methods and the challenges in the bicyclist behavior evaluation. 

3. METHODOLOGY 

Thirty-three participants were recruited via flyers distributed manually, online, and through 
social media. Flier content included contact information, a summary of the requirements for the 
study, and an explanation of the monetary compensation for driving the bike and car simulators. 
Subsequently, prospective participants were screened for eligibility and scheduled to drive in the 
simulator environment. Participants were required to possess a valid driver’s license and were 
compensated $15 per hour for their participation. In addition, participants were asked about their 
biking experience. We provided them with water and candy when they felt tired or had headaches 
while driving with simulators. 

Under the supervision of an advisor, a team of undergraduate and graduate student research 
assistants observed the IRB-approved driving tasks, and questionnaire. Participants were asked to 
fill out a pre-survey questionnaire, drive for about two hours in different simulated scenarios, and 
fill out the post-survey questionnaire to find the effect of their experience on driver behavior. 

The observer made sure that the participants completely understood the objectives of this 
project. They instructed the participants to briefly familiarize themselves with the simulator 
environment and explained the procedure before each scenario. Two Participants were instructed 
to drive bike and car simulators at the same time. When each scenario was run, one participant had 
to follow the other vehicle in the study. All the scenarios were designed to investigate changes in 
bicyclist behavior = toward vehicle traffic. The participants started driving in a base scenario with 
no vehicle traffic to compare their driving behavior with other high traffic condition scenarios. 
Participants then drove seven different in-vehicle scenarios – including: 

● Scenario 1-1:  Bicycle only (traffic scenario independent) - without traffic 
● Scenario 1-2: Bicycle only (traffic scenario independent) - with traffic 
● Scenario 2: Car moving straight (Bicycle ahead of Car, Bicycle in path, same direction 

velocity vector) 
● Scenario 3: Car moving straight (Bicycle ahead of Car, Bicycle in path stationary) 
● Scenario 4: Car moving straight (Bicycle behind Car, Bicycle in path, same direction 

velocity vector) 
● Scenario 5: Car moving straight (Bicycle behind Car, Bicycle in path stationary) 
● Scenario 6: Car moving turning right (Bicycle ahead of Car, Bicycle in path, same direction 

velocity vector) 

A simple real-world network consisting of a straight two-way, two-lane route and two 
signalized intersections with four phases and a 110 second cycle length was designed for both 
participants driving the scenarios with different initial start points. The location of bike and car 
was defined in the software and the following attributes were considered for the simulation: 

● Minimum Weight of bicyclists1: 50 kg 
                                                 
1 Weight of the car. Minimum and maximum values are used to simulate the different loads of each vehicle 
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● Maximum Weight of bicycle: 7.5 kg 
● The tolerance of bicyclist plus bicycle weight: 55 kg ~ 87 kg 
● Max brake force2: 1000 N 
● Front layout3: 0%  
● Rear layout: 100% 
● Estimated acceleration4: 3.5 𝑚

𝑠2 
● Air friction5: 0.4 
● Pitch Inertia6: 17 𝑘𝑔

𝑚2 

● Roll Inertia: 13 𝑘𝑔

𝑚2 

● Yaw Inertia: 10 𝑘𝑔

𝑚2 

As shown in Figure 1, the simulated network for bicyclists and car drivers was considered 
as below: 

 
Figure 1 The simulated network 

It is worth mentioning that, 25 𝑚𝑖𝑙𝑒

ℎ𝑜𝑢𝑟
 (or 40 𝑘𝑚

ℎ𝑜𝑢𝑟
) was defined for the cars, and the speed limit of 

bicyclists was defined as 12 𝑚𝑖𝑙𝑒

ℎ𝑜𝑢𝑟
 (or 20 𝑘𝑚

ℎ𝑜𝑢𝑟
) .  

In the scenario 1-1, only one bicycle was assigned on the network. We tried to investigate the 
longitudinal motion of bicyclists without vehicle traffic conditions.  

                                                 
2 the maximum force that the brakes can apply on the wheels 
3 Layout of the car drive wheels: front-wheel drive, rear-wheel drive, or four-wheel drive. 
4 The amount of acceleration drivers are using 
5 Friction the coefficient for the car, used to compute the air drag 
6 consists of inertia of the vehicle, Roll Inertia, Pitch Inertia, and Yaw Inertia 
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In the scenario 1-2, the first scenario with heavy traffic, (500 𝑣𝑒ℎ

ℎ𝑜𝑢𝑟
) was modeled.  

In the second scenario (scenario 2), the bike is ahead of the car, and the bicycle goes straight before 
the signalized intersection. The bicycle stops before the intersection. The software stops analyzing 
when the bike arrives at the stop line of the first intersection.  
In the third scenario, the location of the bicycle was defined in front of the car. Bicycles and cars 
were run from 492 ft (150m) before the signalized intersection to 492 ft (150m) after the signalized 
intersection. The "same direction velocity vector" means "the same direction". Additionally, the 
bicycle must pass the intersection and both the bike and car must stop after the signalized 
intersection. 
Scenario 4 is the same as the second scenario. In scenario 4, the bicycle is behind the car. 
Scenario 5 is the same as the third scenario. In scenario 5, the bicycle is behind the car. 
In scenario 6, the car should turn right, the bicycle is ahead of the car, and the bike goes straight 
until it passes the signalized intersection. We ignored the left turn in scenario 6. The conflict 
between the bike when passing the intersection and the car when turning right is investigated in 
this scenario.    

During each driving scenario, participants were instructed to drive as they typically would 
on a real road for approximately 5 min and comply with the speed limit. The daytime scenery 
closely matched driving situations in the Baltimore metropolitan area and was designed to create 
a sense of real-world driving for each participant. Traffic flow and density were designed similarly 
in all seven scenarios. The driving experience in each scenario progresses in urban downtown 
routes. The bike and car simulators were integrated together for this project. When both simulators 
are integrated, the car simulator participant can watch the scenario on the car simulator’s screen. 
Therefore, both participants can follow each other and they can be informed about the location of 
one another during the simulation. As shown in Figure 2, two participants can follow each other 
in the same scenario. 

 
Figure 2 Integration of bike and car simulators 
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The questionnaires asked about demographic information and real driving behavior before 
the driving simulator experience (pre-survey), and driving behavior after driving the simulator 
(post-survey). Observers gave participants the option of completing the questionnaire on their own 
or with the assistance of the observer. The simulation was displayed on three, 40-inch LCD 
screens. Participants sat within the simulator’s driver compartment, which provided a view of the 
roadway and dashboard instruments, including a speedometer (Figure 2). Naturalistic engine 
sounds, road noises, and sounds of passing traffic were provided to simulate the real world. 
Simulated vehicles with varying speed and volume were randomly programmed with assigned low 
traffic volume to represent off-peak conditions in the area. The special collision sound and a 
message consisting of “Collision” word were designed for scenarios where the participant collides 
with other vehicles or bicyclists. Different information about the driver’s behavior including speed, 
throttle, brake, steering velocity, offset from road center, and lane change was also calculated. For 
example, offset from the road center, which was reported as the deviated distance from the road 
center toward the right or left side, was calculated and saved as an indicator of impaired driving 
performance. Greater within-lane deviation indicated poorer driving precision. 

Average driving speed when participants exited from the bike lane was calculated based 
on the speed of the vehicle and computed as the degree to which drivers changed their speed for 
each scenario. Lane change frequency was used as an indicator and defined as the number of times 
the driver changed lanes. The brake force and throttle, which are indicators of distraction, were 
compared for each scenario. The severity with which participants hit the brakes demonstrated 
inattention to the road and taking the mind off the road. 

Descriptive statistics were also obtained on pre-survey questionnaire data regarding 
participant characteristics. Some 43.8% of participants were male and 56.2% were female. The 
age group of participants was: 42.4% between 18 to 25 years old; 18.2% between 26 to 35 years 
old; 18.2% between 36 to 45 years old; 18.2% between 46 to 65 years old; and 3% in more than 
65 years old.  

Additionally, the ethnicity (Figure 3), educational status (Figure 4), condition of 
employment (Figure 5), annual household income (Figure 6), were collected.  

 

 
Figure 3 Ethnicity of the participants 
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Figure 4 Educational status of participants 

 
Figure 5 The participant's employment condition 

 
Figure 6 The participant's annual household income 

Participants were classified to different sessions, each consisting of two participants with 
one riding the bike simulator and the other driving the car simulator. They then switched, and the 
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participant who rode the bike simulator drove the car simulator and vice versa. Afterwards, we 
asked each participant to express his/her opinions regarding their perceived safety by selecting a 
number between 1 and 5. The descriptions of each value are shown in Table 1. 

Table 1 Description of the safety of bike lane from participants’ point of view 

Number 1 2 3 4 5 
Description Pretty unsafe unsafe Not safe not unsafe safe Pretty safe 

 

We asked the participants to consider the weather conditions and the number of other 
vehicles around the bike when judging the safety of the bike lane. A simple average was calculated 
for 33 obtained results. Table 2 shows the results of bike riders, and Table 3 shows the result of 
car drivers.  

Table 2 Bike rider’s opinion about the safety of the road (Average percentage - %) 

Scenario Pretty unsafe 
(1) Unsafe (2) Not safe and 

not unsafe (3) Safe (4) Pretty safe 
(5) 

Scenario 1-1 0 21.2 21.2 24.2 33.3 
Scenario 1-2 6.1 36.4 33.3 18.2 6.1 
Scenario 2 0 27.3 24.2 39.4 9.1 
Scenario 3 9.1 21.2 36.4 24.2 9.1 
Scenario 4 0 39.4 24.2 30.3 6.1 
Scenario 5 9.1 30.3 27.3 30.3 3 
Scenario 6 9.1 27.3 33.3 24.2 6.1 

 

Table 3 Car driver’s opinion about the safety of the road (Average percentage - %) 

Scenario 
Pretty unsafe 

(1) Unsafe (2) Not safe and 
not unsafe (3) Safe (4) Pretty safe 

(5) 
Scenario 1-1 0 9.1 24.2 36.4 30.3 
Scenario 1-2 0 21.2 45.5 21.2 12.1 
Scenario 2 0 15.2 27.3 48.5 9.1 
Scenario 3 0 9.1 48.5 33.3 9.1 
Scenario 4 0 15.2 33.3 36.4 15.2 
Scenario 5 0 15.2 39.4 39.4 6.1 
Scenario 6 3 15.2 33.3 42.4 6.1 

 

In a post-survey questionnaire, six solutions proposed to improve the safety of bike lane 
were designed. Participants could choose up to three solutions. The bike lane was designed without 
any barriers or separate markings with a carriageway. The bike lane marking was designed in the 
software as shown in Figure 7. Bike route signs were located every 100m along the road. 
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Figure 7 The simulated cross section of the shared bike lane 

 

Figure 8 shows the results of post-survey questionnaire: 

 
Figure 8 The participants' opinion regarding the improvement of the designed bike lane 

As shown in Table 1 and Table 2, the safety of the designed bike lane was diminished 
when high traffic volume (500 veh/hour) was assigned on the network. As shown in Figure 8, 
adding physical barrier between the bike lane and carriageway (declared by 30 participants), using 
bright green pavement (declared by 20 participants), and providing speed enforcement (speeds less 
than 40 km/hour – declared by 18 participants) were three frequently-selected safety promotion 
solutions among participants.   

 

 



 
 
 

Bicyclist Longitudinal Motion Modeling 

 

29 
 

4. DATA ANALYSIS 

4.1. Methodology for FR car-following validation model  

In order to analyze the Fodholun-Rakha (FR) car following model, the values of the following 
equations were obtained., the following variables are introduced: 

n= the index of the lead vehicle 

n+1= the index of the subject (following) vehicle 

𝑋𝑛+1 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 (𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔) 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

𝑈𝑛+1 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 (𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔) 𝑣𝑒ℎ𝑖𝑐𝑙𝑒,  

𝑈𝑛 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

𝑎𝑛+1 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

𝑢𝑓 = 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒’𝑠 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 (𝑎𝑙𝑠𝑜 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠 𝑡ℎ𝑒 𝑟𝑜𝑎𝑑𝑤𝑎𝑦 𝑓𝑟𝑒𝑒 −

𝑓𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑)=11.17m/se 

𝑑𝑑𝑒𝑠𝑖𝑟𝑒𝑑 =  𝑎 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑐𝑜𝑚𝑓𝑜𝑟𝑡𝑎𝑏𝑙𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 (𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑙𝑦 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑏𝑒 − 3 𝑚/𝑠2) 

𝑆𝑛+1 =  𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘 𝑏𝑢𝑚𝑝𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘 𝑏𝑢𝑚𝑝𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑 

 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

𝑆𝑗 = 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑎𝑡 𝑎 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑧𝑒𝑟𝑜 (𝑖. 𝑒. , 𝑡ℎ𝑒 𝑗𝑎𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑠𝑝𝑎𝑐𝑖𝑛𝑔) 

τ= 𝑡ℎ𝑒 𝑑𝑟𝑖𝑣𝑒𝑟’𝑠 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 − 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒. The driver’s perception-reaction time varies as a 
function of the roadway parameters (𝑢𝑓 = 11.17

𝑚

𝑠𝑒
, 𝑢𝑐 = 8.3775, 𝑞𝑐 = 0.61, 𝑘𝑗 = 0.1886) and 

the vehicle’s speed.  

β = the gearshift impacts at low traveling speeds when trucks are accelerating. This factor is set to 
1.0 for light duty vehicles. 

η = the driveline efficiency (unitless)=0.9 

P = the vehicle power (kW) = 381hp ~ (1hp=0.746 kw) = 284.2 kw 

ɣ = a constant reduction factor of the vehicle power aiming to represent the throttle level (when 
the objective is to determine the maximum acceleration that a vehicle is able to achieve, the value 
of this factor is set equal to 1). 

𝑀𝑡𝑎 = the mass of the vehicle on the tractive axle (kg) =0.55*2700=1485kg 

g = the gravitational acceleration (9.8067 m/s2) 

μ = the coefficient of road adhesion or the coefficient of friction (unitless) = (air friction 
coefficient: 0.4) 
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ρ = the air density at sea level and a temperature of 15◦C (1.2256 kg/m3) 

𝐶𝑑 = the vehicle drag coefficient (unitless), typically 0.30 

𝐶ℎ = the altitude correction factor equal to 1–0.000085 h where h is the altitude in meters 
(unitless)=1 

𝐴𝑓 = the vehicle frontal area (m2), typically 0.85 multiplied by the height and width of the vehicle 
(height= 1.96m , width= 1.72m) 🡪 0.85*1.96*1.72 = 2.865𝑚2 

𝐶𝑟0 = a rolling resistance constant that varies as a function of the pavement type and condition 
(unitless) =1.25  

𝐶𝑟1 = the second rolling resistance constant (h/km) = 0.0328 

𝐶𝑟2 = the third rolling resistance constant (unitless)= 4.575 

M = the total vehicle mass (kg) (weight: 2700kg = 6000lb) 

G = the roadway grade (unitless), Longitudinal slope  

𝑓𝑝 = 𝑡ℎ𝑒 𝑑𝑟𝑖𝑣𝑒𝑟 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 𝑖𝑛𝑝𝑢𝑡, 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝑖𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0.0 𝑎𝑛𝑑 1.0. 

The time headway ensures that the subject vehicle, n +1 follows its lead vehicle at a safe spacing 
in order to avoid a collision under state-state conditions (i.e., when both vehicles are traveling at 
the same constant velocity and assuming that the subject vehicle’s deceleration maneuver starts τ 
seconds after the lead vehicle decelerates). [𝑆𝑛+1

~ =  𝑠𝑗 + 𝜏𝑢𝑛+1] 

τ= 1

𝑘𝑗∗ 𝑢𝑐
2 [

𝑘𝑗∗ 𝑢𝑐
2

𝑞𝑐
− 𝑢𝑓 +

(𝑢𝑓−𝑢𝑐)
2

𝑢𝑓(𝑢𝑓−𝑢𝑛+1)
]                                                                                                      (1) 

If the lead vehicle is traveling at a higher velocity (non-steady-state conditions) then the desired 
safe following spacing can be computed by the following equation. This equation allows the driver 
to drive at a spacing less than the steady-state spacing when the vehicle ahead of it is driving at a 
higher speed. In equation (2), the following variables are considered: 

𝑐1 = 0.796, 𝑐2 = 0.169, 𝑐3 = 0.121 

𝑆𝑛+1
~ = (𝑐1 + 

𝑐2

(𝑢𝑓 − 𝑢𝑛)
+ 𝑐3𝑢𝑛 −

𝑢𝑛+1
2 − 𝑢𝑛

2 − √(𝑢𝑛+1
2 − 𝑢𝑛

2)2

4𝑑𝑑𝑒𝑠
 , 𝑠𝑗)                               (2) 

The FR model includes two terms. The first term is the vehicle acceleration term, while the second 
term is the vehicle deceleration term. Both terms ensure that the vehicle does not collide with its 
lead vehicle.  

𝑎𝑛+1 =  𝑓𝑝𝑎𝑚𝑎𝑥 +  
[𝑢𝑛+1

2 − 𝑢𝑛
2 + √(𝑢𝑛+1

2 − 𝑢𝑛
2)2]2

16(𝑑𝑑𝑒𝑠𝑖𝑟𝑒𝑑 + 𝑔𝐺) ∗ (𝑠𝑛+1 − 𝑠𝑗)2
                                                                      (3) 

𝑓𝑝 = 𝑒−𝑎𝑋𝑛+1(1 − 𝑋𝑛+1
𝑏 𝑒𝑏(1−𝑋𝑛+1))𝑑                                                                                                      (4) 
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𝑋𝑛+1 =
𝑠𝑛+1

~

𝑠𝑛+1
∗

𝑢𝑛+1

𝑢𝑛+1
~                                                                                                                                     (5) 

𝑆𝑛+1
~ = the desired spacing for the current speed. This variable is acquired from equation (6): 

 𝑆𝑛+1
~ =  𝑠𝑗 + 𝜏𝑢𝑛+1                                                                                                                                     (6) 

𝑢𝑛+1
~ = the desired speed for the current spacing. This variable is calculated from equation 

(7).  

𝑈𝑛+1
𝑉𝐴 =

0.555 + 𝑆𝑛+1 − √(−0.556 − 𝑆𝑛+1)2 − 0.484 ∗ (11.17 ∗ 𝑆𝑛+1 − 9.06)

0.242
 

𝑈𝑛+1
𝑉𝐴 =

0.555+𝑆𝑛+1−√(−0.556−𝑆𝑛+1)2−(5.406∗𝑆𝑛+1−4.385)

0.242
                                                                            (7) 

The acceleration, position, and speed of the user-vehicle in each time stamp is obtained by 
equations (10-12). In each time stamp, the Euler's method is followed to update the new speed and 
new position for the next time stamp. Based on Euler’s method, the new position and speed are 
obtained by equations (8-9): 

v(𝑡2)=v(𝑡1)+a(𝑡1)*( 𝑡2-𝑡1)                               (8) 
x(𝑡2)=x(𝑡1)+v(𝑡1)*( 𝑡2-𝑡1)                       (9) 
 
Variables like “a, b, and d” are model parameters that are calibrated to a specific driver and model 
the driver input to the gas pedal. The required parameters for FR model are the acceleration 
parameters: a, b, d, 𝑑𝑑𝑒𝑠𝑖𝑟𝑒𝑑 .  

𝑎𝑚𝑎𝑥 =  
𝐹𝑛+1− 𝑅𝑛+1

𝑀
                           (10) 

𝐹𝑛+1 = 𝑚𝑖𝑛 (3600 ∗
𝜂ɣ𝛽𝑃

𝑢𝑛+1
, 𝑀𝑡𝑎𝑔𝜇)                                                                                                       (11) 

𝑅𝑛+1 =  
𝜌𝐶𝑑𝐶ℎ𝐴𝑓𝑔𝑢𝑛+1

2

2
+ 𝑀𝑔𝐶𝑟0(𝐶𝑟1𝑢𝑛+1 + 𝐶𝑟2) + 𝑀𝑔𝐺               (12) 

 FR car-following model was calibrated for the scenarios 2, 3, 4, 5, 6. The user vehicle 
(𝑜𝑟 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒) and front vehicle (lead vehicle) were investigated in each scenario. The 
“bike as the front vehicle” was excluded from the calibration analysis, meaning that the 
participants who follow the bike as the front (lead) vehicle was completely excluded.  Table 4 
shows the number of correct participants in each scenario for calibrating the FR car-following 
model. It is worth mentioning that 33 participants were recruited to drive the car simulator and ride 
the bike simulator in each scenario.  
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Table 4 Number of reliable participants after removing bike as the front vehicle 

Scenario Number of the correct participants 
2 20 
3 15 
4 18 
5 18 
6 12 

 

Equations (1-12) were rewritten as a MATLAB code. A reliable sample consisting of 100 
values of (a,b,d) was determined to analyze the FR car-following model. The speed plots were 
drawn for each participant in each scenario. The obtained speed values from MATLAB code were 
compared to the collected speed values by the car simulator. Eventually, Root-mean-square 
(RMSE) was obtained for each pair of (a,b,d) for each participant in each scenario. RMSE is the 
standard deviation of the residuals (prediction errors). Residuals are a measure of how far from the 
regression line data points are; RMSE is a measure of how spread out these residuals are. In other 
words, it tells how concentrated the data is around the line of best fit. RMSE is calculated by 
equation (13): 

𝑅𝑀𝑆𝐸 =  √
(∑ (𝑥𝑓𝑖

− 𝑥𝑜𝑖
)2𝑁

𝑖=1

𝑁
                           (13) 

In equation (13), (𝑥𝑓𝑖
− 𝑥𝑜𝑖

) is the difference of forecasts (expected values or unknown 
results; the obtained speed values from MATLAB code) from observed values (known results; the 
collected speed values by the car simulator), and N is the sample size.  

4.2. Discussion  

As shown in Table 4, a total 83 reliable participants were obtained to validate the FR car-
following model. In each scenario, the speed-time chart obtained by MATLAB code (consisting 
of equations 1-12) and the speed collected by the car simulator were drawn. It is worth noting that 
the time intervals for each participant may be different from one another since the values recorded 
when the bicycle was the front vehicle were excluded from the data analysis. Diverse time intervals 
were therefore seen for each participant when the front (lead) vehicle was not a bicycle. As 
mentioned before, a consistent sample including 100 (a,b,d) values was selected to run the FR car-
following model for each participant in each scenario. Each (a,b,d) pair was utilized to run the 
MATLAB code. Position, speed, and acceleration were then obtained. After finding position, 
speed, and acceleration values, equation 13 was used to calculate the RMSE. In total, 100 RMSEs 
were obtained for each participant in each scenario. Respectively, 2000, 1500, 1800, 1800, and 
1200 RMSEs were obtained in scenarios 2, 3, 4, 5, 6.  

The smallest RMSE was selected for each participant in each scenario. Finally, 20, 15, 18, 
18, and 12 smallest RMSEs were selected for statistical analysis. Subsections 4.2.1 to 4.2.5 explain 
the smallest RMSE values in scenarios 2 to 6. Scenario 1 was designed to evaluate the performance 
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of bicycles on the road. In scenario 1, no interaction between the car and the bike was applied. 
Nevertheless, this scenario is excluded from the RMSE computational analysis.  

 
4.2.1. Scenario 2 

The second scenario stated that the bike is ahead of the car, and that the bike stops before 
the signalized intersection. Table 5 shows the obtained results of the smallest RMSEs for each 
participant.  

Table 5 Smallest RMSEs in Scenario 2 

Participant ID # Smallest RMSE (x) Normal distribution 
1201 7.9 0.0442 
1202 8.9 0.0492 
1204 11.0 0.0578 
1209 9.9 0.0539 
1212 13.8 0.0608 
1216 29.3 0.0028 
1218 4.0 0.0227 
1220 7.2 0.0402 
1221 9.2 0.0508 
1223 15.1 0.0586 
1224 19.1 0.0404 
1228 14.9 0.0589 
1230 13.6 0.0610 
1231 3.0 0.0182 
1235 20.9 0.0304 
1236 21.8 0.0255 
1239 12.0 0.0601 
1243 9.9 0.0540 
1245 4.9 0.0272 
1247 18.2 0.0453 

 

As shown in Table 5, the RMSE of participant 1231 (RMSE=3) was selected as the 
smallest RMSE. Mean (=13.15), variance (=42.61), and standard deviation (=6.52) were acquired 
for Table 5. The bell-shaped standard normal distribution chart for Table 5 is shown in Figure 9.  
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Figure 9 Standard normal distribution chart in scenario 2 

The speed trajectory for participant #1231 is shown in Figure 10.  

 
Figure 10 Speed trajectory (RMSE=3) in scenario 2 

Figure 10 shows that the obtained speed changes by FR car-following model (MATLAB 
code) were greater than the values of collected speeds by car simulator. The FR model’s speeds 
experienced a considerable jump after the 16th event. Furthermore, mean (=8.63), variance 
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(=4.79), and standard deviation (=2.19) were obtained for the smallest RMSE in scenario 2. Figure 
11 shows the acceleration trajectory for the smallest RMSE in scenario 2.  

 
Figure 11 Acceleration trajectory of the smallest RMSE in scenario 2 

 

4.2.2. Scenario 3 

In the third scenario, the bike was positioned in front of the car. Bikes and cars were run 
from 492 ft (150m) before the signalized intersection to 492 ft (150m) after the signalized 
intersection. The bike had to pass the intersection, and both the bike and the car had to stop after 
the signalized intersection. Table 6 shows the obtained results of the smallest RMSEs for each 
participant in the third scenario. As shown in Table 6, the RMSE of participant 1246 (RMSE=3.6) 
was selected as the smallest RMSE. Mean (=12.32), variance (=51.62), and standard deviation 
(=7.18) were procured for Table 6. The bell-shaped standard normal distribution chart for Table 
6 is shown in Figure 12. 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

A
cc

el
er

at
io

n
 (

m
/s

²)

Time(s)

FR model Car simulator



 
 
 

Bicyclist Longitudinal Motion Modeling 

 

36 
 

Table 6 Smallest RMSEs in Scenario 3 

Participant ID # Smallest RMSE (x) Normal distribution 
1203 4.6 0.0313 
1204 17.9 0.0411 
1206 19.2 0.0351 
1209 11.4 0.0551 
1220 6.3 0.0389 
1224 17.3 0.0437 
1228 11.4 0.0551 
1230 6.6 0.0406 
1236 6.5 0.0398 
1239 5.3 0.0344 
1242 13.8 0.0544 
1243 31.5 0.0016 
1244 15.0 0.0517 
1246 3.6 0.0267 
1247 9.7 0.0521 

 

 

 
Figure 12 Standard normal distribution chart in scenario 3 

The speed trajectory for participant #1246 is shown in Figure 13.  
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Figure 13 Speed trajectory (RMSE=3.6) in scenario 3 

As shown in Figure 13, the speed values obtained by the FR model is less than the speed 
values by collected by the car simulator after the 7th event. The FR speed chart experienced a sharp 
jump in the 17th event and were greater than speed values collected by the car simulator. 
Additionally, mean (=11.84), variance (=4.47), and standard deviation (=2.17) were obtained for 
the smallest RMSE in scenario 3. Figure 14 shows the acceleration trajectory for the smallest 
RMSE in scenario 3. 
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Figure 14 Acceleration trajectory of the smallest RMSE in scenario 3 

 

4.2.3. Scenario 4 

Scenario 4 declared that the bike is behind the car and that the bike must stop before the 
signalized intersection. Table 7 shows the obtained results of the smallest RMSEs for each 
participant in the fourth scenario. As shown in Table 7, the RMSE of participant 1236 
(RMSE=1.3) was selected as the smallest RMSE. Mean (=7.73), variance (=24.22), and standard 
deviation (=4.92) were obtained for Table 7. The bell-shaped standard normal distribution chart 
for Table 7 is shown in Figure 15. 
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Table 7 Smallest RMSEs in Scenario 4 

Participant ID # Smallest RMSE (x) Normal 
distribution 

1201 5.5 0.0734 
1206 22.6 0.0008 
1210 3.9 0.0598 
1212 8.2 0.0807 
1218 6.3 0.0778 
1220 5.9 0.0753 
1221 5.6 0.0735 
1222 8.0 0.0809 
1223 14.6 0.0304 
1224 10.1 0.0721 
1233 3.6 0.0567 
1236 1.3 0.0346 
1242 9.2 0.0773 
1244 7.6 0.0810 
1245 4.5 0.0655 
1246 3.0 0.0513 
1247 2.7 0.0480 
1250 8.5 0.0802 

 
 

  

 
Figure 15 Standard normal distribution chart in scenario 4 

The speed trajectory for participant #1236 is shown in Figure 16. 
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Figure 16 Speed trajectory (RMSE=1.3) in scenario 4 

As shown in Figure 16, the speed values collected by the FR model were less than those 
collected by the car simulator from the 6th to 9th events, and in the 15th event. Speed values collected 
by the FR model also experienced an ascending slope from the 9th to 14th event, and the speed 
trajectory collected by the car simulator experienced a mild ascending slope from the 5th to 16th 
event. Moreover, mean (=5.6), variance (=1.55), and standard deviation (=1.24) were obtained for 
the smallest RMSE in scenario 4. Figure 17 shows the acceleration trajectory for the smallest 
RMSE in scenario 4. 

 
Figure 17 Acceleration trajectory of the smallest RMSE in scenario 4 

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20

Sp
ee

d
 (

m
/s

)

Time(s)

FR Model Car simulator

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16 18

A
cc

el
er

at
io

n
 (

m
/s

²)

Time(s)

FR model Car simulator



 
 
 

Bicyclist Longitudinal Motion Modeling 

 

41 
 

4.2.4. Scenario 5 

Scenario 5 is nearly identical to scenario 3, however the bike is positioned behind the car. 
Table 8 shows the obtained results of the smallest RMSEs for each participant in scenario 5. As 
shown in Table 8, the RMSE of participant 1231 (RMSE=1.9) was selected as the smallest RMSE. 
Mean (=6.61), variance (=10.04), and standard deviation (=3.17) were gained for Table 8. The 
bell-shaped standard normal distribution chart for Table 8 is shown in Figure 18. 

Table 8 Smallest RMSEs in Scenario 5 

Participant ID # Smallest RMSE (x) Normal 
distribution 

1201 5.3 0.1108 
1202 7.5 0.1119 
1203 5.1 0.1091 
1205 5.1 0.1087 
1209 13.6 0.0124 
1218 6.1 0.1171 
1220 3.6 0.0823 
1222 3.9 0.0317 
1223 2.1 0.0525 
1231 1.9 0.0488 
1233 8.5 0.0975 
1235 6.3 0.1176 
1239 7.3 0.1140 
1242 5.8 0.1160 
1243 5.3 0.1113 
1244 8.8 0.0928 
1245 7.4 0.1134 
1247 13.4 0.0139 

 

 
Figure 18 Standard normal distribution chart in scenario 5 
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The speed trajectory for participant #1231 is shown in Figure 19. 

 
Figure 19 Speed trajectory (RMSE=1.9) in scenario 5 

As shown in Figure 19, the speeds obtained by the FR model are less than those collected 
by the car simulator in the 12th to 16th events, and the 25th to 31st events. Both trajectories 
experienced a mild ascending slope from events 16 to 25. Mean (=9.1), variance (=1.31), and 
standard deviation (=1.14) were obtained for the smallest RMSE in scenario 5. Goodness of fit for 
participant 1231 was calculated as 0.997, showing how well sample data resembles a normal 
distribution. Figure 20 shows the acceleration trajectory for the smallest RMSE in scenario 5. 

 
Figure 20 Acceleration trajectory of the smallest RMSE in scenario 5 
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4.2.5. Scenario 6 

Scenario 6 states that the car must turn right in the intersection, the bike is ahead of the car, 
and the bike must go straight until it passes the signalized intersection. This scenario was designed 
to investigate the performance of car drivers when interacting with bicyclists at signalized 
intersections. In the sixth scenario, bicyclists started riding straight and the car driver started to 
turn right from west bound to south bound. A conflict was seen at the middle of the intersection 
between car drivers and bicyclists, although most participants respected bicyclists' right-of-way in 
the conflict area. The confliction area is shown in Figure 21. 

 
Figure 21 Conflict area 

Table 9 shows the obtained results of the smallest RMSEs for each participant in scenario 6. As 
shown in Table 9, the RMSE of participant 1239 (RMSE=2.4) was selected as the smallest 
RMSE. Mean (=9.3), variance (=35.98), and standard deviation (=5.99) were acquired for Table 
9. The bell-shaped standard normal distribution chart for Table 9 is shown in Figure 22. 

Table 9 Smallest RMSEs in Scenario 6 

Participant ID # Smallest RMSE (x) Normal distribution 
1201 5.2 0.0526 
1209 15.7 0.0378 
1216 12.2 0.0594 
1218 4.0 0.0452 
1220 16.0 0.0358 
1223 17.3 0.0276 
1229 4.0 0.0449 
1233 5.8 0.0560 
1235 6.0 0.0573 
1239 2.4 0.0342 
1242 3.2 0.0397 
1247 18.5 0.0205 
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Figure 22 Standard normal distribution chart in scenario 6 

The speed trajectory for participant #1239 is shown in Figure 23. 

 
Figure 23 Speed trajectory (RMSE=2.4) in scenario 6 
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constant slope in this time interval. The mean (=9.01), variance (=4.12), and standard deviation 
(=2.03) were obtained for the smallest RMSE in scenario 6. Figure 24 shows the acceleration 
trajectory for the smallest RMSE in scenario 6. 

 
Figure 24 Acceleration trajectory of the smallest RMSE in scenario 6 

4.3. Optimal “a, b, and d” model parameters (the driver input to the gas 
pedal) 

The smallest RSMEs in each scenario identified to detect the optimum model parameters. These 
three values are parameters that are calibrated to a specific driver and model the driver input to the 
gas pedal. The smallest RMSE in each scenario was scrutinized, and the optimum model 
parameters for participants #1231 in scenario 2, #1246 in scenario 3, #1236 in scenario 4, #1231 
in scenario 5, and #1239 in scenario 6 were specified. Table 10 shows the optimum model 
parameters.  

Table 10 Optimal model parameters (a,b,d) 

Scenario RMSE Optimal model parameters 
a b d 

2 3.0 1.796533695 0.292836385 0.400371922 
3 3.6 1.357236292 0.083090091 0.254186277 
4 1.3 0.982307127 0.255301632 0.389939398 
5 1.9 1.529238754 0.0391814 0.223062249 
6 2.4 1.110173497 0.059169787 0.234473687 
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5. CONCLUSION  

The research presented in this report validates the performance of the Fadhloun-Rakha 
(FR) car-following model. The FR car following model demonstrates the following unique 
characteristics: 

1) Explicitly modeling the driver throttle and brake pedal input in a single continuous equation  
2) Explicitly capturing driver perception and control inaccuracies and errors 
3) Modeling vehicle dynamics using a point-mass model  
4) Allowing for shorter than steady-state following distances when following faster leading 

vehicles  
5) Ensuring collision-free driving 

Thirty-three participants were invited to ride the bike simulator and drive the car simulator 
simultaneously. Both simulators were integrated together, and each driver could see the location 
of the other participant in the simulation time interval. Six scenarios were developed. Scenario 1 
was designed to investigate the performance of bikes on the road. Scenario 2 to 6 were designed 
to evaluate the behavior of both participants (bicyclist and car driver) when both simulators are 
integrated, and especially the interaction time intervals between bicyclists and other road users on 
the simulated network. The FR model respects vehicle dynamics constraints and uses very similar 
collision-avoidance strategies to ensure a safe following distance between vehicles. In addition, 
the FR model explicitly captures human driving variability in its acceleration function. The 
research investigated the performance of FR model on a laboratory collected dataset. The data 
includes traffic features collected from both simulators on a real-word simulated network.  

The FR car following model was validated based on data collected from33 participants in 
each scenario. Root Mean Square Error (RMSE) was used as an efficient indicator of the ability 
of a car-following model to replicate empirical behavior from a statistical perspective. A reliable 
sample including 100 (a,b,d) pairs was selected to find the RMSE and optimum model parameters. 
In total, 83 reliable databases were determined and the RMSE values were calculated. The FR 
model was rewritten in MATLAB software (Equations 1-12) to find the speed, position, and 
acceleration values. First and foremost, the speed values from MATLAB code (FR model) were 
obtained, then the speed values for each participant were compared with the collected speeds from 
the car simulator. RMSE values were determined, and the smallest RMSE among 100 RMSEs for 
each participant in each scenario was specified. Additionally, the speed and acceleration 
trajectories for the smallest RMSE were drawn. Eventually, the optimal model parameters (a,b,d) 
values were identified.  

This research effort was initiated mainly for the purpose of investigating the performance 
of the FR model with empirically observed driver behavior and capturing driver perception while 
controlling inaccuracies. The results highlighted the acceptable performance of the FR model in 
comparison with the collected speed, acceleration, and deceleration values from the simulators. 
Furthermore, three parameters a, b, and d (besides the vehicle and roadway parameters, which are 
typically known) were successfully calibrated as shown in Table 10.  
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