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Executive Summary 

 
The development of transportation networks that can satisfy evolving travel demand 

characteristics within specified resource constraints requires decisions about interrelated projects. 

These projects must be identified, specified, evaluated, prioritized, and scheduled, subject to 

various constraints regarding financing, construction times and resources, accessibility, and 

equity. Commonly used evaluation practices are inadequate for projects in transportation 

networks, since they mostly neglect possible interrelations among projects due to non-linearly 

additive benefits, costs, budget constraints, and other factors. The benefits of link additions or 

improvements are especially interrelated since they affect the flows and benefits of other links. 

For example, if the capacity increases in one link of a network, congestion and average travel 

times tend to increase in other links that are “in series” with it and decrease in its “parallel” links. 

 

This project develops methods for optimizing the long-term evolution of transportation systems 

by improving previously developed methods for evaluating, selecting, sequencing, and 

scheduling interrelated alternatives in road networks. It demonstrates how complete schedules of 

network improvements can be evaluated with either a very fast traffic assignment algorithm or 

with a slower microscopic simulation model that is better at capturing the complexities of traffic 

flows in congested networks. The obtained results indicate to what extent and in what situations 

the faster algorithm can approximate the more reliable evaluation results obtained through the 

microsimulation when selecting and scheduling interrelated improvements in road networks. 

Such results also indicate the potential value of hybrid methods for solving network development 

problems by combining a rough initial search with approximation methods with a refined search 

through microscopic simulation. 

 

Through this project, several methods have also been developed for optimizing network 

development schedules based on various objectives and constraints while considering 

uncertainties regarding future demand, budgets, costs and construction times. Although this 

project has supported part of the work in one Ph.D. dissertation and will very likely yield future 

journal publications, the remainder of this report includes only one paper that has been submitted 

to date and is currently under review for presentation at the 2024 Annual Meeting of the 

Transportation Research Board and for publication in the Transportation Research Record. 

 

The methods developed in this project can improve the ability of various transportation agencies 

to efficiently allocate their limited resources, coordinate their development plans, deal with 

disruptions, and generally improve the capacity, service quality and overall performance of 

transportation systems. 
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ABSTRACT 

A bi-level model was formulated to optimize the selection and schedule of interrelated 

improvement projects in road networks. The lower level performs user-equilibrium (UE) traffic 

assignment and computes hourly total travel time cost. The upper-level model seeks the network 

improvement plan that minimizes the present value of costs (PVC). Any sequence of improvement 

projects is mapped to a unique schedule based on binding budget and work time constraints. 

Approximation methods are then applied to estimate the effects of demand growth and cost 

discounting in the planning horizon and determine budget-ready times of projects with internal 

budget supply. The model is demonstrated in a numerical case, where the improvement plan is 

optimized by a genetic algorithm (GA), and two methods for the lower-level computation–Frank-

Wolfe traffic assignment and microscopic simulation–are compared in evaluating travel time cost. 

As the demand and congestion level increases, the absolute and relative values of discounted travel 

time cost evaluated by the F-W algorithm diverge further from those evaluated by microscopic 

simulation, which is treated as a superior method to F-W for capturing dynamics of individual 

vehicles. 

Keywords: Interrelated Projects, Road Network, Network Development Optimization, 

Microscopic Simulation 

INTRODUCTION 

In a road network, vehicles move through links and nodes under various constraints to satisfy 

demands from users in the network. When deciding on a long-term network improvement plan 

over a planning horizon, multiple projects are possible, each having its own requirements for labor, 

equipment, materials, budgets, and construction durations. Implementation and completion of an 

improvement project reduces the systemwide travel time by increasing capacities of network 

components or adding new links into the network. One problem for road network managers is to 

select, sequence, and schedule these projects to minimize project costs and cumulative travel time 

over the planning horizon. 

The candidate projects can be regarded as “interrelated” if the effects of individually completing 

these projects on network performance cannot be simply aggregated for evaluating their combined 

effect. To capture this interrelation, measures of network performance (e.g., total travel time or 

cost) must be evaluated for each network configuration upon completing specific projects. In road 

networks, such evaluations are commonly conducted by computing the total travel time under 

some type of traffic flow pattern (e.g., user equilibrium). Various methods exist for travel time 

computation. Some methods take advantage of link congestion functions and perform iterative 

traffic flow assignments based on shortest paths, while others perform traffic simulations that 

incorporate more real-world factors such as car-following behavior and delays at intersections. 

While the former methods are much more computationally effective than the latter, they sacrifice 

most of the detailed mechanics of road traffic and may show inaccuracies in estimating traffic 

measurements for practical decisions. It is desirable to make comparisons between these methods 

to examine the conditions under which each type of method can provide satisfactory results with 

acceptable computation costs. 

The following sections review some relevant studies; formulate the bi-level optimization model 

for selection, sequencing, and scheduling of road improvement projects; present methods for 
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solving the problem; and discuss some numerical results which demonstrate and compare the 

methods. 

LITERATURE REVIEW 

In various transportation networks, optimizing the selection and scheduling of interrelated projects 

is necessary for maximizing total benefit or minimizing total cost over a specified planning horizon. 

Earlier applications of this problem in transportation include studies for inland waterways [1-2] 

and road networks [3-5]. In recent years such studies have appeared for road networks [6-13] as 

well as for rail and rail transit networks [14-16]. 

The relevant studies on this problem are listed in Table 1, which classifies some characteristics of 

previous studies in this field. First, various methods for solving such problems have been 

developed for several kinds of transportation networks, mostly using heuristic methods such as 

variations of genetic algorithms. Second, in more recent studies the problem formulation was 

usually bi-level, where flows in the network were assigned at the lower level and the selection and 

scheduling of projects was optimized at the upper level for a specific objective function (OF) 

computed over the planning horizon. In these bi-level models, the OFs were associated with costs, 

benefits, or travel time, and the project interrelation was captured by the projects’ resulting changes 

in the flow-related network performances. In other words, the project interrelation could not be 

explicitly expressed in OFs or constraints. Third, the implementation of projects was most 

commonly subject to budget constraints and was also affected by resource and precedence 

limitations. In most studies, however, the budget supply was limited to external sources. In many 

actual cases, revenues (e.g., tolls) can be collected from the network flows as an “internal” budget 

supply for project implementation. Fourth, the problem formulation mostly allowed budget and 

demand levels to be time-varying over the planning horizon, which was more commonly discrete 

than continuous. A discrete-time planning horizon facilitates computation of OFs, but limits the 

flexibility of determining project implementation times.  

Microscopic simulation plays a crucial role in assessing the impact of improvement projects on 

road networks. It offers a detailed perspective on the interactions between individual vehicles and 

traffic control devices, such as traffic lights, stop signs, and yield signs. These interactions not only 

slow down traffic and cause local delays but also generate shockwaves that affect downstream 

traffic at a broader level. When capturing the intricacies of individual vehicle maneuvers within 

the network and their aggregated effects on traffic flow, microscopic traffic simulation becomes 

essential.  Over the past 70 years, microscopic traffic simulation has proven to be a valuable and 

cost-effective tool in various traffic studies for research and practical purposes. Its applications 

include feasibility studies, sensitivity analyses, and virtual demonstrations of different traffic 

scenarios. The Federal Highway Administration (FHWA) has compiled a list featuring over 30 

well-known microscopic simulation tools [17]. Alongside the one used in this paper, 

INTEGRATION, other prominent tools include VISSIM, AIMSUN2, CORSIM, and MicroSim, 

among others. 

This paper contributes to the optimization of selection and scheduling of interrelated projects in 

road networks in the following aspects: 

1) The following features are combined. Internal as well as external budget sources and a 

continuous planning horizon are considered jointly, allowing more flexibility in deciding 
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when to start and complete projects. Effects of demand growth over the planning horizon 

are evaluated with an approximation method. 

2) Overlapping of project implementation periods is allowed. Since traffic links have reduced 

capacities during construction, overlapping project implementations result in more 

potential network configuration states.   

3) This paper presents a comparative analysis of two methods for evaluating network 

performance: traffic assignment and microscopic traffic simulation. The study delves into 

the discrepancies observed between these methods across different levels of travel demand. 

The insights drawn from the conclusions of this paper facilitate a deeper understanding of 

the appropriate applications of each method, thereby enhancing the interpretation of the 

modeling results.   
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Table 1 Relevant studies on selection, sequencing and scheduling interrelated projects 

Authors and 

date 

Objective functions Continuous 

planning 

horizon? 

Optimizing 

selection & 

schedule?  

Solution methods Applications Constraints Time varying? 

Hu & 

Schonfeld 

(1984) [3] 

Improve level of service 

(traffic flow) by max. 

annual net benefit 

No No (sel. only) IMSL routine ZXMIN Various road 

projects & their 

combinations 

None Demand 

Wei & 

Schonfeld 

(1994) [4] 

Min. PV of total user travel 

time costs plus project 

costs 

No Yes Branch and bound, 

with artificial neural 

network for UE 

Link capacity 

expansion (road) 

Budget, project 

continuity 

Demand 

Jong & 

Schonfeld 

(2001) [1] 

Min. PV of total waiting 

time cost 

Yes Yes GA Lock improvement 

(waterway) 

Budget Budget, demand 

Wang & 

Schonfeld 

(2005) [2] 

Max. PV of total user 

benefits 

Yes Yes GA with a waterway 

simulation 

Lock improvement 

(waterway) 

Budget Budget, demand 

Tao & 

Schonfeld 

(2007) [5] 

Min. total user travel time 

(with a random term), 

based on UE traffic 

No Yes Island model (GA 

extension) 

Link improvement 

(road) 

Budget Budget, demand 

Li et al. 

(2013) [6] 

Max. total benefit 

measured by net reductions 

of agency and user costs, 

based on traffic assigned by 

MMCN 

No No (sel. only) Multi-commodity min. 

cost network, life-cycle 

cost analysis, 

hypergraph Knapsack 

Various road 

projects (widen-

ing, new link, 

interchange…) 

Budget Budget, project 

cost, demand 

Bagloee & 

Asadi (2015) 

[7] 

Max. total benefit 

measured by total travel 

time reduced based on 

static traffic assignment 

Yes No (sched. 

only, se-

quencing) 

Gradient-based hybrid 

GA and ant colony on 

NN 

Road addition None Demand 

Miandoabchi 

et al. (2015) 

[8] 

Min. total travel time and 

CO emission (bi-objective), 

based on UE traffic 

No Yes NSGA-II (a GA 

variant) and B-cell 

algorithm 

Lane and road 

addition, lane 

allocation and 

alteration  

Budget Demand 

Gong & Fan 

(2016) [9] 

Min. excessive cost, based 

on UE traffic 

No No (sched. 

only) 

GA, with F-W for UE Mtn. (road) A set of required 

projects 

None 
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Hosseininasab 

et al. (2018) 

[10] 

Multi-objective: min. total 

travel time, max. user 

satisfaction over time, and 

max. spatial equity, based 

on UE traffic 

No Yes 2 approaches 

combining FW, GA, 

simplex phase I, & 

knees identification 

Link addition 

(road) 

Budget, technical 

limitation 

Budget, demand 

Dao et al. 

(2019) [14] 

Min. total renewal and 

unavailability costs, with 

economy of scale 

No Yes 

(recurrent) 

Triple-prioritization 

rule 

Infrastructure 

renewal in rail 

network 

Possession time, 

network 

constraints, due-

date 

Maximum 

number of 

possession at 

location 

Peng et al. 

(2019) [15] 

Min. PV of user cost plus 

supplier cost 

Yes Yes Customized GA Investments in rail 

transit network 

Budget (with 

internal supply) 

Demand 

Shayanfar & 

Schonfeld 

(2019) [11] 

Min. PV of total system 

cost (including vehicle 

operation & safety) 

Yes Yes GA, with F-W for 

assessment 

Lane addition & 

widening (road) 

Budget with fuel 

tax supply 

Budget, demand 

Miralinaghi et 

al. (2020a) 

[12] 

Min. total travel delay, 

based on UE traffic 

No Yes “Active-set” algorithm Road capacity 

improvement, link 

addition, mtn. 

Budget Budget, demand 

Miralinaghi et 

al. (2020b) 

[13] 

Min. weighted total travel 

cost minus total business 

revenue, based on UE 

traffic 

No No (sched. 

only) 

“Active-set” algorithm Road capacity 

improvement, mtn. 

Budget, required 

set of projects 

Budget, demand 

Mohammadi 

et al. (2020) 

[16] 

Max. weighted total quality 

of the network based on 

Track Quality Index 

No Yes 

(recurrent) 

Greedy heuristic for an 

initial solu-tion to 

MILP and its robust 

version 

Various rail freight 

network mtn. 

Budget, mtn. 

thresholds, time 

allowed, 

resources 

Constraint 

parameters, 

effects, and costs 

of mtn. 

mtn. = maintenance;  max. = maximize; min. = minimize;  sel. = selection; sched. = scheduling   



11 

 
 

 

PROBLEM FORMULATION 

Lower-level traffic assignment model 

In a road network, there are nodes 𝑛 ∈ 𝑁 and links 𝑎 ∈ 𝐴. Each link has its length 𝑑𝑎 in miles. For 

each OD pair 𝑤 ∈ 𝑊 in this network, 𝑞𝑤 vehicles/hour travel through multiple connecting paths 

𝑝 ∈ 𝑃𝑤. 

Each link has its actual capacity 𝑘𝑎  in vehicles/hour. Travel time through each link in hours, 

denoted as 𝑡𝑎 , equals 𝑡𝑎
0  when there are no vehicles on the link. With a traffic flow of 𝑥𝑎  in 

vehicles/hour, the travel time 𝑡𝑎 is given by the following congestion function proposed by the 

Bureau of Public Roads (BPR) [18]: 

𝑡𝑎(𝑥𝑎) = 𝑡𝑎
0[1 + 0.15

𝑥𝑎

 𝑘𝑎
]4 (1) 

For each OD pair 𝑤, the set of all possible simple paths in the network is denoted as 𝑃𝑤, and the 

number of vehicles in an hour using path 𝑝 ∈ 𝑃𝑤  is denoted as 𝑓𝑝
𝑤 . According to the user 

equilibrium (UE) conditions proposed by Wardrop [19], the following nonlinear programming 

problem is formulated for the road traffic: 

𝑀𝑖𝑛 ∑ ∫ 𝑡𝑎(𝑥)𝑑𝑥
𝑥𝑎

0𝑎∈𝐴

 (2) 

subject to:  

∑ 𝑓𝑝
𝑤

𝑝∈𝑃𝑤

= 𝑞𝑤, ∀𝑤 ∈ 𝑊 (3) 

𝑓𝑝
𝑤 ≥ 0, ∀𝑝 ∈ 𝑃𝑤, 𝑤 ∈ 𝑊 (4) 

𝑥𝑎 = ∑ ∑ 𝑓𝑝
𝑤𝛾𝑎,𝑝

𝑤

𝑝∈𝑃𝑤𝑤∈𝑊

, ∀𝑎 ∈ 𝐴 (5) 

The objective function to be minimized in (2) is the sum of integrals of the link congestion 

functions with respect to traffic flows. Constraints (3) and (4) ensure that for each OD pair, the 

sum of all non-negative traffic flows on different paths equals the OD pair’s total traffic demand. 

The traffic flow through each link is given by constraint (5), where 𝛾𝑎,𝑝
𝑤  is a binary indicator that 

equals 1 only if link 𝑎 is used by path 𝑝 ∈ 𝑃𝑤 of OD pair 𝑤. When the optimized UE assignment 

is reached, no vehicle can reduce its travel time by shifting its route. The UE traffic flow on link 

𝑎 per hour is denoted by 𝑥𝑎
𝑈𝐸 . The hourly total travel time cost in the network is: 

𝑍𝑈𝐸 = 𝑣 ∑ 𝑥𝑎
𝑈𝐸𝑡𝑎(𝑥𝑎

𝑈𝐸)

𝑎∈𝐴

 (6) 

where 𝑣 is the value of time in $/vehicle/hour. 

Upper-level model for optimizing selection and scheduling of improvement projects 
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In a planning horizon of 𝑇 years, there are |Λ| available projects for improving the road network. 

The number of projects L(=|𝜎𝑖𝑚𝑝|) to be implemented in an improvement sequence 𝜎𝑖𝑚𝑝 ∈ Σ𝑖𝑚𝑝 

satisfies 0 ≤ 𝐿 ≤ |Λ|. Then, there are |Λ|!/(|Λ| − 𝐿)! possible sequences with L improvements. 

The 𝑖 th improvement in the sequence 𝜎𝑖𝑚𝑝  is denoted as 𝜎𝑖𝑚𝑝
𝑖  , if |𝜎𝑖𝑚𝑝| ≠ 0. Considering that 

capacities of some links are reduced during construction of a project, both the start and the 

completion of each project lead to changes in network configuration (including availability of 

nodes and links as well as link capacities). The original network configuration is denoted as 𝜅0, 

and the updated configurations following the first, second, and later starts/completions of 

improvements are denoted as 𝜅1 , 𝜅2 , …, 𝜅2|𝜎𝑖𝑚𝑝| . These configurations start at 𝜏0 , 𝜏1 , 𝜏2 , …, 

𝜏2|𝜎𝑖𝑚𝑝|  years into the planning horizon, and they last for 𝜑0 , 𝜑1 , 𝜑2 , …, 𝜑2|𝜎𝑖𝑚𝑝|  years, 

respectively.  

With an annual growth rate of demand 𝑔, the hourly demands of all OD pairs increase at a constant 

annual rate: 

𝑞𝑤(𝜏) = (1 + 𝑔)𝜏𝑞𝑤(0) (7) 

where 𝜏 is the number of years elapsed in the planning horizon. 𝑞𝑤(0) denotes the hourly demand 

of OD pair 𝑤 at the year zero, and this is a fixed parameter.  

With a time-varying demand level, the average hourly total cost of travel time under user 

equilibrium (𝑍𝑈𝐸) as obtained at the lower-level model can be treated as a function of 𝜏. When 

evaluating the value of 𝑍𝑈𝐸(𝜏), different improvement sequences 𝜎𝑖𝑚𝑝 lead to different time spans 

of network configuration 𝜅𝑖 (0 ≤ 𝑖 ≤ 2|𝜎𝑖𝑚𝑝|). Let 𝑍𝑈𝐸

𝜅𝑖,𝜎𝑖𝑚𝑝 
(𝜏) be a continuous function that is 

integrable in the time interval where the network is in phase 𝑖  with configuration 𝜅𝑖  given the 

improvement sequence 𝜎𝑖𝑚𝑝. The present value (PV) of cumulative total cost of travel time over 

the planning horizon with the sequence 𝜎𝑖𝑚𝑝 is: 

𝑌𝜎𝑖𝑚𝑝
= 𝐻 ∑ ∫  

𝑍𝑈𝐸

𝜅𝑖,𝜎𝑖𝑚𝑝 
(𝜏)

(1 + 𝑟)𝜏
𝑑𝜏

𝜏𝑖

𝜏𝑖−1

2|𝜎𝑖𝑚𝑝|

𝑖=1

 (8) 

where 𝐻 is the number of effective hours in a year, and 𝑟 is the annual interest rate. This equation 

serves as a general formulation, while the actual computation of 𝑌𝜎𝑖𝑚𝑝
  uses the approximation 

provided in the “Methods” section. 

Given the evaluated improvement sequence 𝜎𝑖𝑚𝑝, the total construction (implementation) cost of 

the  𝑖th project in the sequence (𝜎𝑖𝑚𝑝
𝑖 ) is 𝐶

𝜎𝑖𝑚𝑝
𝑖 . Let 𝛽

𝜎𝑖𝑚𝑝
𝑖  be a binary indicator that equals 1 if 𝜎𝑖𝑚𝑝

𝑖  

can be completed within the planning horizon. The detailed rules for determining 𝛽
𝜎𝑖𝑚𝑝

𝑖   are 

explained in the following section. 

In the upper-level model, to optimize the selection and schedule of improvements, the objective is 

to find the sequence 𝜎𝑖𝑚𝑝 that minimizes the present value of costs (i.e., PVC), which is the sum 

of cumulative travel time cost plus total project construction cost during the planning horizon: 
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𝑀𝑖𝑛 𝑃𝑉𝐶(𝜎𝑖𝑚𝑝 ∈ Σ𝑖𝑚𝑝) = 𝑌𝜎𝑖𝑚𝑝
+ ∑ 𝛽𝜎𝑖𝑚𝑝

𝑖  
𝐶

𝜎𝑖𝑚𝑝
𝑖

(1 + 𝑟)
𝜏

𝜎𝑖𝑚𝑝
𝑖

|𝜎𝑖𝑚𝑝|

𝑖=1
 (9) 

where 𝜏
𝜎𝑖𝑚𝑝

𝑖  denotes the time when the cumulative available budget becomes sufficient to pay for 

project 𝜎𝑖𝑚𝑝
𝑖 . It is assumed that the payment from the available budget for project 𝜎𝑖𝑚𝑝

𝑖  occurs only 

at the time 𝜏
𝜎𝑖𝑚𝑝

𝑖 . Rules for determining 𝜏
𝜎𝑖𝑚𝑝

𝑖  are explained in the next section. It should be noted 

that, for a given sequence 𝜎𝑖𝑚𝑝, its 𝑖th project 𝜎𝑖𝑚𝑝
𝑖  is also the 𝑖th project to start in the planning 

horizon, but not necessarily the 𝑖th project to be completed. 

Constraints and rules for scheduling project implementation 

In this section, constraints and rules for uniquely determining start and completion times of 

projects under a given improvement sequence 𝜎𝑖𝑚𝑝 are presented. According to these rules, each 

project that reduces the hourly travel time cost is initiated and completed as soon as its benefits 

justify its cost, considering the current demand level and any binding constraints. This approach 

aims to maximize the cumulative savings in travel time cost over the planning horizon. The 

following assumptions are applied: 

1) The initial available budget is zero. During the planning horizon, there is a constant 

monthly external supply of budget 𝐹,  and available budget cannot be negative at any time. 

2) A project cannot be completed until its funding is fully ready. 

3) A constant small fraction 𝜇 of total travel time cost is treated as a toll usable as an internal 

source of budget. 

Concurrent work on multiple projects is allowed. Given the sequence 𝜎𝑖𝑚𝑝, project 𝜎𝑖𝑚𝑝
𝑖  has its 

construction cost 𝐶
𝜎𝑖𝑚𝑝

𝑖   and its required work duration 𝜙
𝜎𝑖𝑚𝑝

𝑖  . If there is only external budget 

supply, then max{𝐶
𝜎𝑖𝑚𝑝

𝑖 /𝐹, 𝜙
𝜎𝑖𝑚𝑝

𝑖 } years are needed to complete its construction. The times when 

the available budget reaches sufficiency for project 𝜎𝑖𝑚𝑝
𝑖  are given by 

𝜏
𝜎𝑖𝑚𝑝

𝑖 = 𝐶𝜎𝑖𝑚𝑝
𝑖 𝐹⁄ + 𝜏

𝜎𝑖𝑚𝑝
𝑖−1 , 1 ≤ 𝑖 ≤  |𝜎𝑖𝑚𝑝| (10a) 

If internal budget supply is available, however, 𝜏
𝜎𝑖𝑚𝑝

𝑖  is given by 

𝐶
𝜎𝑖𝑚𝑝

𝑖 = ∑ ∫  [𝐹 + 𝜇𝐻𝑍𝑈𝐸

𝜅𝑗,𝜎𝑖𝑚𝑝 
(𝜏)]𝑑𝜏

𝜏𝑗+1

𝜏𝑗

𝑗2

𝑗=𝑗1

, 1 ≤ 𝑗 ≤  2|𝜎𝑖𝑚𝑝| (10b) 

subject to: 

𝜏𝑗1−1 < 𝜏
𝜎𝑖𝑚𝑝

𝑖−1 = 𝜏𝑗1
, 2 ≤ 𝑖 ≤ |𝜎𝑖𝑚𝑝| (11a) 

𝜏𝑗2
< 𝜏

𝜎𝑖𝑚𝑝
𝑖 = 𝜏𝑗2+1, 1 ≤ 𝑖 ≤ |𝜎𝑖𝑚𝑝| (11b) 

𝜏𝜎𝑖𝑚𝑝
0 = 0 (11c) 
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where 𝜏
𝜎𝑖𝑚𝑝

𝑖  needs to be numerically determined using the methods provided in the “Methods” 

section. With internal and external budget supply, max{𝜏
𝜎𝑖𝑚𝑝

𝑖 − 𝜏
𝜎𝑖𝑚𝑝

𝑖−1 , 𝜙
𝜎𝑖𝑚𝑝

𝑖 } years are needed to 

complete the construction of 𝜎𝑖𝑚𝑝
𝑖 .  

Whenever funding is completed for project 𝜎𝑖𝑚𝑝
𝑖 , the next project 𝜎𝑖𝑚𝑝

𝑖+1  in the sequence (if it exists) 

starts. If work duration is not yet reached for 𝜎𝑖𝑚𝑝
𝑖  , concurrent construction of 𝜎𝑖𝑚𝑝

𝑖   and 𝜎𝑖𝑚𝑝
𝑖+1  

occurs. The durations of phases (𝜑𝑖) and their corresponding network configurations (𝜅𝑖) depend 

on starting and completion times of improvement projects. It is defined that Phase 𝑖 starts from the 

𝑖 th starting/completion time (𝜏𝑖 ) of all projects in the sequence 𝜎𝑖𝑚𝑝  and ends at the (𝑖 + 1) th 

starting/completion time (𝜏𝑖+1). If the starting/completion time of one project overlaps with that 

of another project (that is, 𝜏𝑖1
= 𝜏𝑖2

, 𝑖1 < 𝑖2 ), then there is a corresponding phase with zero 

duration (𝜑𝑖1
= 0). If the improvement sequence is not empty (i.e., |𝜎𝑖𝑚𝑝| ≠0), then Phase 0 has 

a duration of zero at the start of the planning horizon ( 𝜏0 = 𝜏1 = 𝜑0 = 0 ). An example of 

determining the schedule for a sequence with 5 selected projects is shown in Figure 1, with given 

input parameters 𝐶
𝜎𝑖𝑚𝑝

𝑖  , 𝐹 , 𝜇 , and 𝜙
𝜎𝑖𝑚𝑝

𝑖  . For the second and fourth project in the sequence, 

𝜏
𝜎𝑖𝑚𝑝

𝑖 − 𝜏
𝜎𝑖𝑚𝑝

𝑖−1 ≥ 𝜙
𝜎𝑖𝑚𝑝

𝑖 , while for other projects 𝜏
𝜎𝑖𝑚𝑝

𝑖 − 𝜏
𝜎𝑖𝑚𝑝

𝑖−1 < 𝜙
𝜎𝑖𝑚𝑝

𝑖 . 

 

Figure 1 Determining the schedule for a sequence with 5 projects 

In the example above, all projects in the sequence 𝜎𝑖𝑚𝑝 are completed within the planning horizon. 

A rule is set for truncating project starting/completion times (𝜏𝑖) beyond the planning horizon. 

After determining raw values of 𝜏1, 𝜏2, …, 𝜏2|𝜎𝑖𝑚𝑝|, if a specific time value 𝜏𝑗 satisfies 𝜏𝑗−1 < 𝑇 ≤

𝜏𝑗 , then values of 𝜏𝑖  with 𝑖 ≥ 𝑗  are truncated to 𝑇 . This means that phase ( 𝑗 − 1 ) must be 

terminated at the end of the planning horizon, and that all phases after phase (𝑗 − 1) have zero 

durations. Meanwhile, values of binary indicators 𝛽
𝜎𝑖𝑚𝑝

𝑖  in equation (9) equal to 1 by default. If a 

𝜏
𝜎𝑖𝑚𝑝

𝑗  (budget-ready time for project 𝜎𝑖𝑚𝑝
𝑗

) satisfies 𝜏
𝜎𝑖𝑚𝑝

𝑗−1 < 𝑇 ≤ 𝜏
𝜎𝑖𝑚𝑝

𝑗 , then 𝜏
𝜎𝑖𝑚𝑝

𝑖  with 𝑖 ≥ 𝑗 are 
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set to 𝑇 , and binary indicators 𝛽
𝜎𝑖𝑚𝑝

𝑖   with 𝑖 ≥ 𝑗  equal to 0, which means that the 𝑗 th and later 

projects in the sequence cannot be funded within the planning horizon. 

METHODS 

Frank-Wolfe traffic assignment at the lower level 

At the lower-level model, the Frank-Wolfe (F-W) algorithm [20] computes hourly total travel time 

cost in the road network at user equilibrium (𝑍𝑈𝐸). The steps of this algorithm are shown below. 

0) Initialization. Let flows on all links be zero and do all-or-nothing traffic assignment based 

on the free-flow travel times of links (that is, for each OD pair 𝑤, find out the path 𝑝 with 

the shortest travel time, and let 𝑓𝑝
𝑤 = 𝑞𝑤 for this path). Compute the traffic flow vector 

{𝑥𝑎
1}, and start iteration 𝑖=1. 

1) At the start of iteration 𝑖, compute the travel time vector {𝑡𝑎
𝑖 } where 𝑡𝑎

𝑖 = 𝑡𝑎(𝑥𝑎
𝑖 ) for each 

link. Then do all-or-nothing assignment based on {𝑡𝑎
𝑖 }, and compute the resulting traffic 

flow to obtain the auxiliary flow vector {𝑢𝑎
𝑖 } , which serves as an updated searching 

direction of traffic flows. 

2) Find the optimal step length 𝜆𝑖 ∈ [0,1] that moves the flow vector from {𝑥𝑎
𝑖 } to {𝑥𝑎

𝑖+1}. A 

bisection method is used to search for 𝜆𝑖 that satisfies the following equation:  

∑(𝑢𝑎
𝑖 − 𝑥𝑎

𝑖 ) ∙ 𝑡𝑎[𝑥𝑎
𝑖 + 𝜆𝑖(𝑢𝑎

𝑖 − 𝑥𝑎
𝑖 )]

𝑎∈𝐴

= 0 (12) 

3) Obtain the succeeding flow vector {𝑥𝑎
𝑖+1} where 𝑥𝑎

𝑖+1 = 𝑥𝑎
𝑖 + 𝜆𝑖(𝑢𝑎

𝑖 − 𝑥𝑎
𝑖 ). Compute the 

relative gap between flow vectors {𝑥𝑎
𝑖 } and {𝑥𝑎

𝑖+1} given by: 

∆𝑥= √∑(𝑥𝑎
𝑖+1 − 𝑥𝑎

𝑖 )2

𝑎∈𝐴

∑ 𝑥𝑎
𝑖

𝑎∈𝐴

⁄  (13) 

4) If the relative gap is below a pre-specified threshold, stop the iterative search and use 

{𝑥𝑎
𝑖+1} as the final vector of UE traffic flow. Otherwise, loop back to step 1) and perform 

the next iteration. 

Applying microscopic simulation at the lower level 

An alternative lower-level method to compute 𝑍𝑈𝐸  in the road network is aided by a microscopic 

simulation model. To conduct a thorough examination of vehicle operations within the network at 

a microscopic level, an agent-based traffic simulation model is essential. This model must 

accurately capture the dynamic maneuvers of vehicles in real-world scenarios, including 

interactions between vehicles, car-following behavior, gap acceptance for turns, weaving, lane 

changing, and more. For this purpose, the INTEGRATION trip-based microscopic traffic 

simulation model is adopted [21, 22]. It tracks individual vehicle movements from their origins to 

their destinations, providing a detailed resolution of one status update every 1/10 of a second. This 

level of granularity allows the representation of spatial variations in traffic conditions with 

considerable flexibility. Unlike traditional models that assume uniform traffic conditions along a 

link, INTEGRATION allows for continuous density variations along the link. This dynamic 
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density variation is particularly useful in representing scenarios such as platoons departing from 

traffic signals and the propagation of shock waves both upstream and downstream along an arterial 

link. Over the last two decades, INTEGRATION has not only been validated against standard 

traffic flow theory [23-25], but has also been utilized for multiple studies where both a microscopic 

level of detail and a macro-level understanding of the impact on the traffic system are needed [26-

28].  

The INTEGRATION model computes delays by estimating the difference in travel time between 

the vehicle's instantaneous speed and free-speed every 1/10 of a second. Regarding the routing 

method and determination of the next downstream link, the INTEGRATION model offers multiple 

techniques, some of which are deterministic and static, while others are stochastic and dynamic. 

Among these techniques, this study employs the Frank-Wolfe routing algorithm, where link travel 

times are computed using a weighted average of multiple trees. This approach ensures a 

comprehensive analysis of vehicle movements while incorporating delays caused by traffic 

controls and congestion. 

Upon completing the simulation with dynamic traffic assignment, the INTEGRATION model 

generates summarized statistics, which can be computed either by link, by vehicle, or for the entire 

network. In the summary output file for the network, the vehicle trips are counted as the total 

number of vehicles that complete their trips within the simulation period. To compute the hourly 

total travel time cost in the network (𝑍𝑈𝐸) without directly using equations (1) to (5), the model 

sums up the trip times across all vehicle trips completed within the simulation period. This 

comprehensive approach allows for a detailed analysis of the traffic behavior within the network 

and will allow the comparison of the two modeling methods in later sections.  

Approximating effects of demand growth and discount rate 

When computing the present value (PV) of total travel time cost accumulated over the planning 

horizon with the improvement sequence 𝜎𝑖𝑚𝑝, as given by 𝑌𝜎𝑖𝑚𝑝
 in equation (8), the following 

approximation method is applied. The planning horizon is first divided into multiple equal-length 

sub-periods. Next, the starting and completion times of projects (𝜏𝑖) further divide existing sub-

periods into shorter ones. From the earliest to the latest, these sub-periods are denoted by 𝜀1, 𝜀2, 

and so forth, and their corresponding midpoint times are denoted by 𝜏𝜀1
, 𝜏𝜀2

, and so forth. With 

the demand growth rate 𝑔, hourly demands (𝑞𝑤) of all OD pairs at each midpoint time are obtained 

using equation (7). For each sub-period 𝜀𝑖, using the midpoint demands and the corresponding 

network configuration 𝜅𝜀𝑖
, the approximated hourly travel time cost is computed with the lower-

level model: 

�̅�𝑈𝐸

𝜅𝜀𝑖
,𝜎𝑖𝑚𝑝 

= 𝑍𝑈𝐸

𝜅𝜀𝑖
,𝜎𝑖𝑚𝑝 

(𝜏𝜀𝑖
) (14) 

With the duration of this sub-period (𝜑𝜀𝑖
, in years), the hours in a year (𝐻), and the discounting 

factor (1 + 𝑟)𝜏𝜀𝑖 , the approximated PV of cumulative travel time cost over sub-period 𝜀𝑖 can be 

obtained. Finally, 𝑌𝜎𝑖𝑚𝑝
 is computed by summing up these PVs over all |𝜀| sub-periods: 

𝑌𝜎𝑖𝑚𝑝
= 𝐻 ∑

𝜑𝜀𝑖
�̅�𝑈𝐸

𝜅𝜀𝑖
,𝜎𝑖𝑚𝑝 

(1 + 𝑟)𝜏𝜀𝑖

|𝜀|

𝑖=1
 (15) 
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The iteration method for numerically finding the approximated time 𝜏
𝜎𝑖𝑚𝑝

𝑖  (the budget-ready time 

for the 𝑖th project in sequence 𝜎𝑖𝑚𝑝) is illustrated in the flowchart in Figure 2 and in the changes 

on time axes in Figure 3. 

 

Figure 2 Steps for numerically determining the approximated budget-ready time 
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Figure 3 Changes on time axes while finding the budget-ready time  

In Step 4, the time increment 𝜏Δ is determined with the following equations: 

𝐶
𝜎𝑖𝑚𝑝

𝑖 = ∑ (𝐹 + 𝜇𝐻�̅�𝑈𝐸

𝜅𝜀𝑗
,𝜎𝑖𝑚𝑝 

)

𝑗2

𝑗=𝑗1

∙ min {𝜑𝜀𝑗
, max {𝜏

𝜎𝑖𝑚𝑝
𝑖−1 + 𝜏Δ − 𝜏𝜀𝑗

+ 𝜑𝜀𝑗
/2, 0}} , 𝑗 ≥ 1 (16) 

subject to: 

𝜏𝜀𝑗1−1
< 𝜏

𝜎𝑖𝑚𝑝
𝑖−1 < 𝜏𝜀𝑗1

, 2 ≤ 𝑖 ≤ |𝜎𝑖𝑚𝑝| (17a) 

𝜏𝜀𝑗2
+ 𝜑𝜀𝑗2

/2 = �̂�
𝜎𝑖𝑚𝑝

𝑖 , 1 ≤ 𝑖 ≤ |𝜎𝑖𝑚𝑝| (17b) 

0 < 𝜏Δ < �̂�
𝜎𝑖𝑚𝑝

𝑖 − 𝜏
𝜎𝑖𝑚𝑝

𝑖−1 , 1 ≤ 𝑖 ≤ |𝜎𝑖𝑚𝑝| (17c) 

𝜏𝜎𝑖𝑚𝑝
0 = 0 (17d) 
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In Step 7, the difference Δ is given by: 

Δ = 𝐶
𝜎𝑖𝑚𝑝

𝑖 − ∑ (𝐹 + 𝜇𝐻�̅�𝑈𝐸

𝜅𝜀𝑗
,𝜎𝑖𝑚𝑝 

)

𝑗2

𝑗=𝑗1

∙ 𝜑𝜀𝑗
, 𝑗 ≥ 1 (18) 

subject to: 

𝜏𝜀𝑗1−1
< 𝜏

𝜎𝑖𝑚𝑝
𝑖−1 < 𝜏𝜀𝑗1

, 2 ≤ 𝑖 ≤ |𝜎𝑖𝑚𝑝| (19a) 

𝜏𝜀𝑗2
+ 𝜑𝜀𝑗2

/2 = 𝜏𝑀 < �̂�
𝜎𝑖𝑚𝑝

𝑖 , 1 ≤ 𝑖 ≤ |𝜎𝑖𝑚𝑝| (19b) 

𝜏𝜎𝑖𝑚𝑝
0 = 0 (19c) 

In the search of 𝜏
𝜎𝑖𝑚𝑝

𝑖  based on existing 𝜏
𝜎𝑖𝑚𝑝

𝑖−1 , if for a specific 𝑗 both �̂�
𝜎𝑖𝑚𝑝

𝑗  and the first value of 

𝜏𝐼 exceed 𝑇 (the duration of the planning horizon), then the numerical search is terminated. For all 

𝑖 ≥ 𝑗, values of 𝜏
𝜎𝑖𝑚𝑝

𝑖  are set to 𝑇, and the binary indicators 𝛽
𝜎𝑖𝑚𝑝

𝑖  equal 0. 

Genetic algorithm for project selection and sequence optimization 

The optimization of the long-term improvement plan in the upper-level model uses a customized 

genetic algorithm (GA) whose operator settings are based on those used in Wu et al. [29].  

To tackle the selection and sequencing of improvement projects, some chromosome 

representations and operator settings are modified. In population initialization, after generating 

each chromosome by randomly arranging integers 1 to |Λ|, each location in the chromosome has 

a specified probability that the number is replaced with a blank. When evaluating each 

chromosome, blank locations are removed, and the remaining sequence of numbers represents the 

implementation sequence of improvement projects. In the crossover operator, the blank locations 

are temporarily filled with numbers so that each integer from 1 to |Λ| appears in each chromosome 

exactly once. These locations move together with their corresponding numbers and return blank at 

the end of crossover. In the mutation operator, in addition to equiprobable swapping or insertion, 

a given probability is assigned to the action that selects a random location and turns the number in 

it into a blank or vice versa (ensuring that no numbers repeat in a chromosome). For each 

improvement sequence to be evaluated, the algorithm checks whether it has been previously 

evaluated by looking for it in a list. If yes, its corresponding objective function value is directly 

retrieved from the list to avoid repetitive computation. Otherwise, the objective function value is 

computed for this “new” sequence and recorded in the list along with the sequence. 

NUMERICAL RESULTS 

Optimizing long-term improvement plan with underlying Frank-Wolfe Algorithm 

To demonstrate the proposed integrated optimization model, a road network based on the Sioux 

Falls network [30] is used in the numerical case as shown in Figure 4. Each existing link has its 

numeric label. All links shown in the figure are two-directional, with equal numbers and widths of 

lanes in their two directions. The length of each link (in miles) and its total one-directional capacity 

(in vehicles per hour) are labelled in the figure. This network is modeled using NetworkX, a Python 

package. This package also assists the Frank-Wolfe algorithm by finding the shortest path for each 

OD pair. 
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Figure 4 The example Sioux Falls road network 

For traffic simulations, all lane widths are assumed to be 11 feet. In each direction, links (3), (4), 

(5), (6), (8), (10), (14), (16), (17), (18), (20), (22), (24), (26), (29), (31), and (33) have three lanes, 

and the others have two lanes. Lane capacity throughout the network is 750 vehicles per hour per 

lane. The normal free flow travel times through links are based on the normal free flow speed of 

30 miles per hour.  

Original hourly travel demands in vehs/hr by OD pair are shown in Table 2. This demand level 

lasts for 18 hours a day, with 𝐻 = 6,570 hours per year. 

Table 2 Original hourly demands by OD pair in vehicles/hour 

From 
To 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1  180       270    240    150        
2       240   270      120      90   
3     210 150     210   210           
4        180    180      120   180    
5   150       210     180    90      
6 240       240         180      150  
7    240     300    300           240 

8  300         330    300     240     
9      300      360      240   270    

10       330       300 270    240      
11  240          270        270  240   
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12        330         270 270     270  
13   360       330      240     300    
14 270      300            300     210 

15    270 330      300           240   
16 210    180    240           150     
17      210     240     180        120 

18     210         240       150  210  
19   180    210          120     180   
20            150  180 150        120  
21         300    210   150  180       
22   210 150    240                120 

23 150     180       240      150      
24  120  180      240          180     

 

In a planning horizon of 𝑇=10 years, there are 6 candidate improvement projects that increase link 

capacities upon their completion (the increase rates are based on the original values in Figure 4): 

Table 3 Candidate improvement projects and their parameters in the road network 

Proj. 

# 

Description Construction 

cost 𝐶𝑙 (×$106) 

Required work 

time 𝜙𝑙 (years) 

1 Increasing capacities of links 4, 5, 6 by 1/3 8.6 0.75 

2 Increasing capacities of links 11, 12, 15 by 1/3 8.4 0.75 

3 Increasing capacities of links 27, 28, 31 by 25% 6.6 0.75 

4 Increasing capacities of links 8, 22, 29, 33 by 25% 5.7 0.75 

5 Increasing capacities of links 23, 30, 34 by 25% 4.35 0.5 

6 Increasing capacities of links 21, 36, 37, 38 by 20% 11.6 1 

 

When projects 1, 2, 3, and 6 are under construction, capacities of affected links decrease from the 

base values by 25%, and travel times through them increase by 1/3. When projects 4 and 5 are 

under construction, capacities of affected links decrease by 20%, and travel times through them 

increase by 25%.  

The unit value (cost) of travel time (𝑣) is $15/veh/hr. The planning horizon is first divided into 10 

sub-periods of 1 year and further divided by the starting and completion times of projects. The 

annual interest rate r is 5%, and the annual growth rate of demand g is 2.5%. In addition to the 

annual external budget supply 𝐹 = $9×106, a fraction 𝜇 = 1% of total travel time cost is used as the 

internal source of the improvement budget. In the F-W traffic assignment algorithm the threshold 

of ∆𝑥 in equation (13) is 0.001. When determining the budget-ready times of implemented projects, 

the threshold of Δ in equation (18) is $1,000. GA parameters are set as follows: pop_size = 30, 

best_chroms = 2, max_iter = 150, max_stall = 30, p_c = 0.5, p_m = 0.8, sel_pres = 0.06. 

The model and the numerical case are coded in Python 3.7.3. The program is run on a personal 

laptop with an Intel® Core™ i7-8750H CPU @ 2.20GHz. With the lower-level UE traffic 

assignment conducted by the F-W algorithm, the GA-optimized solution is represented by (4, 1), 

which means that projects 4 and 1 are selected and sequentially completed within the planning 

horizon. Project 4 and Project 1 are started at 0 years and 0.4433 years into the planning horizon, 



22 

 
 

 

respectively, and are completed at 0.75 years and 1.1933 years into the planning horizon. The 

resulting minimized PVC is $3.39405×109. The computation time is 3604.6 seconds. This GA-

optimized solution is the global optimum, as shown by exhaustive enumeration. 

With the same set of dividing times, the change in non-discounted hourly travel time cost with the 

optimized improvement plan is compared with that without any network improvement in the first 

4 years of the planning horizon, as shown in Figure 5. While the construction of projects 

temporarily increases the hourly travel time cost, their completion reduces it in the long run. 

 

Figure 5 Effects of improvements in hourly travel time cost 

Comparing two lower-level computation methods with example improvement sequences 

The two lower-level computation methods described above represent different approaches in terms 

of their underlying logic. While the traffic assignment using the F-W algorithm is computationally 

efficient in evaluating improvement sequences within an optimization framework that employs a 

global objective function and a set of constraints, it falls short in modeling crucial aspects such as 

vehicle interactions, stop-and-go behavior resulting from traffic controls or congestion, and the 

related delays and shockwaves. Consequently, it proves insufficient in fully capturing the intricate 

details of traffic conditions, particularly in congested scenarios. To comprehensively account for 

factors such as vehicle-to-vehicle and vehicle-to-control interactions, which significantly 

contribute to delays, it becomes necessary to incorporate these elements when computing the 

present values of travel time cost (PVTTC, not including the present value of construction costs). 

Thus, a higher-fidelity tool is required to validate the evaluation results obtained only through 

traffic assignment using the F-W algorithm. INTEGRATION, a microscopic traffic simulation 

model, should enable a more accurate and realistic representation of traffic dynamics under various 

conditions. 
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The results of the two lower-level computation methods are compared across ten example 

improvement sequences where different combinations of improvement projects are applied. The 

ten sequences labeled from No.1 to No.10 are represented by: (2), (4, 1), (6, 4), (1, 5, 6), (3, 2, 5), 

(4, 5, 2), (5, 6, 4, 1), (2, 3, 6, 1, 5), (3, 5, 1, 6, 2, 4), and (6, 2, 5, 1, 4, 3). When computing the 

PVTTC of these sequences, the starting and completion times of projects are first determined using 

the F-W traffic assignment at the lower level and the baseline demand level as shown in Table 2. 

For each of these sequences, regardless of the method applied at the lower level (F-W traffic 

assignment or microscopic simulation) and the varied demand levels, the same set of starting and 

completion times is used as the division times of sub-periods. To examine the impact of demand 

level on the PVTTCs evaluated with two methods in the lower-level model, the demand level 

varies at 25%, 40%, 50%, 60%, and 75%, in addition to the original 100% flow rate. Table 4 

presents the PVTTCs of the ten example improvement sequences computed under different 

demand levels with two methods. Given a demand level and using one of the two methods, each 

PVTTC value is marked with its ranking among the ten sequences (a lower PVTTC means a higher 

ranking) inside the parentheses. 

Table 4 PVTTCs and their rankings with different demand levels and lower-level methods 

Using F-W traffic assignment at the lower level 

Seq. 

No. 

Improvement 

sequence 

PVTTC (×$108) at different demand levels (Ranking inside parentheses) 

25% 

demand 

40% 

demand 

50% 

demand 

60% 

demand 

75% 

demand 

100% 

demand 

1 2 6.6449(3) 11.1972(8) 14.4782(10) 17.9626(10) 23.5893(10) 34.1053(10) 

2 4→1 6.6406(2) 11.1715(2) 14.4285(1) 17.8805(1) 23.4428(4) 33.8032(4) 

3 6→4 6.6460(4) 11.1810(3) 14.4427(4) 17.9039(6) 23.4762(6) 33.8544(6) 

4 1→5→6 6.6543(7) 11.1994(9) 14.4664(7) 17.9303(7) 23.5105(8) 33.8997(8) 

5 3→2→5 6.6463(5) 11.1935(5) 14.4671(8) 17.9410(9) 23.5438(9) 33.9942(9) 

6 4→5→2 6.6396(1) 11.1708(1) 14.4315(2) 17.8913(3) 23.4628(5) 33.8385(5) 

7 5→6→4→1 6.6519(6) 11.1839(4) 14.4390(3) 17.8862(2) 23.4369(1) 33.7564(3) 

8 2→3→6→1→5 6.6612(10) 11.2077(10) 14.4726(9) 17.9332(8) 23.5046(7) 33.8648(7) 

9 3→5→1→6→2→4 6.6605(9) 11.1967(7) 14.4518(6) 17.8975(5) 23.4380(2) 33.7275(1) 

10 6→2→5→1→4→3 6.6596(8) 11.1951(6) 14.4504(5) 17.8968(4) 23.4390(3) 33.7349(2) 

Using microscopic simulation at the lower level 

Seq. 

No. 

Improvement 

sequence 

PVTTC (×$108) under different demand levels (Ranking inside parentheses) 

25% 

demand 

40% 

demand 

50% 

demand 

60% 

demand 

75% 

demand 

100% 

demand 

1 2 8.8430(2) 16.8429(7) 32.8747(9) 52.7318(8) 78.7471(10) 131.3138(10) 

2 4→1 8.8461(3) 16.5242(1) 30.9310(2) 50.4549(4) 75.9464(6) 125.9006(5) 

3 6→4 8.8515(4) 16.6694(4) 31.0122(3) 49.8583(2) 75.9089(5) 127.3430(6) 

4 1→5→6 8.8564(6) 16.9514(10) 32.6763(8) 52.1586(7) 77.7070(8) 127.4763(7) 

5 3→2→5 8.8532(5) 16.8783(8) 32.9712(10) 52.8387(10) 77.9042(9) 130.1717(9) 

6 4→5→2 8.8363(1) 16.5594(2) 30.6847(1) 49.5406(1) 75.1790(4) 125.0906(1) 

7 5→6→4→1 8.8689(7) 16.6680(3) 31.4211(7) 50.2621(3) 74.5916(1) 125.1169(2) 

8 2→3→6→1→5 8.8857(9) 16.9269(9) 33.3313(4) 52.8018(9) 76.9717(7) 128.8017(8) 

9 3→5→1→6→2→4 8.8863(10) 16.7298(6) 31.3504(5) 50.8736(6) 74.9340(2) 125.3844(3) 

10 6→2→5→1→4→3 8.8833(8) 16.7158(5) 31.4081(6) 50.6188(5) 75.1222(3) 125.6325(4) 
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Figure 6 illustrates the PVTTCs of sequences 2 through 10, plotted against the PVTTC of sequence 

1 as the baseline (100%). Notably, the two methods consistently rank the candidate sequences 

similarly. However, the network exhibits varied improvement results for each sequence. The 

INTEGRATION model, in particular, demonstrates more variations due to its microscopic 

simulation capabilities, which allow it to capture the effects of traffic congestion (including 

supersaturated conditions), traffic signal delays, and other real-world delays.  
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(f) 

Figure 6 PVTTC of improvement sequences compared to sequence 1 (at demand level of (a)25%, 

(b)40%, (c)50%, (d)60%, (e)75%, (f)100%) 

One key distinction between the two methods lies in the microscopic feature of INTEGRATION. 

By capturing the interactions of individual vehicles, INTEGRATION models delays and 

congestion in a way that reflects the instability of a network under congested conditions. This 

feature provides a more detailed understanding of how demand levels affect the results of the two 

methods. To investigate this further, the PVTTC rankings of the 10 sequences based on the results 

generated by two different lower-level methods are compared using the rank correlation coefficient 

𝜌, for all the demand levels 𝑑 ∈ 𝐷: 

𝜌 = ∑(𝑅𝑠,𝑚𝑠
𝑑 − 𝑅𝑠,𝑡𝑎

𝑑 )2, ∀𝑑 ∈ 𝐷

10

𝑠=1

 (20) 

where 𝑅𝑠,𝑚𝑠
𝑑   is the ranking of the 𝑠 th sequence using microscopic simulation and 𝑅𝑠,𝑡𝑎

𝑑   is the 

ranking of the 𝑠th sequence using F-W traffic assignment. Figure 7 presents the variation of 𝜌 at 

different demand levels. 
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Figure 7 Change in rank correlation coefficient with the varying demand level 

As observed, the disparity in rankings between the two methods initially remains minimal when 

the network operates in free-flow conditions. However, this discrepancy progressively grows with 

increasing demand levels and reaches its peak when the network becomes congested. The 

microscopic simulation, with its capability to capture delays arising from congestion and traffic 

control devices, contributes to the widening gap between the two rankings. As congestion 

intensifies, vehicles may start to wait outside the network, and their waiting time is not accounted 

for, yielding a relative stable divergence between the two methods when demand level is above 

70%. This outcome aligns with the findings of Aljamal et al. [31], which suggest that 

INTEGRATION effectively captures fluctuating congestion and accurately reflects the escalating 

travel time resulting from higher traffic demand and reduced roadway capacities. 

CONCLUSIONS 

The presented work focuses on optimizing selection, sequencing, and scheduling of interrelated 

projects in road networks while highlighting the comparison of two methods for travel time 

evaluation. 

For road networks, a bi-level model is designed for jointly assigning traffic to user equilibrium 

(UE) at the lower level and optimizing the selection and sequencing of network improvement 

projects at the upper level. Each improvement sequence is mapped to a unique schedule based on 

binding budget and work duration constraints. The planning horizon is divided into short sub-

periods to approximate the effects of demand growth and cost discounting. The lower-level model 

computes the average hourly travel time cost in each sub-period under the time-varying network 

configuration, and the upper-level model minimizes the expected present value of cost (PVC, 

cumulative travel time cost plus project construction cost) over the planning horizon. A set of 

methods is proposed for determining budget-ready times of projects with internal budget supply 



29 

 
 

 

enabled. The model is demonstrated in a numerical case, where the selection and sequencing of 6 

candidate improvement projects is optimized by a customized GA. 

Using ten example improvement sequences, two lower-level methods–F-W traffic assignment and 

microscopic simulation–are compared concerning their consistencies and performances in 

evaluating travel time costs under multiple demand levels. When the network is in uncongested 

conditions with nearly free-flow travel times, the two methods yield similar results in terms of the 

rankings of estimated present value of travel time cost (PVTTC) for different improvement 

sequences. However, as the congestion level heightens in the road network, the precision of 

microscopic simulation becomes evident in capturing the fluctuations at a macroscopic level by 

aggregating the dynamics of individual vehicles. The varying PVTTC rankings of the example 

improvement sequences using two different lower-level methods indicate that, particularly in 

congested situations, microscopic simulation emerges as a more appropriate and reliable tool for 

computing total travel time in road networks. 

This work can be extended in the following aspects: 

1) The effects of completed improvement projects on the demand level as well as those of 

demand elasticities on equilibrium traffic flows may be considered. 

2) The model may be tested in a larger network with more candidate projects, where other 

heuristic methods may be applied for the upper-level optimization and compared. 

3) More general forms of budget accumulation, demand growth, and congestion function may 

be included. 

4) Uncertainties of multiple correlated parameters may be considered, and the network 

improvement may be optimized in a stochastic context. 
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