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Abstract 

Electric vehicles (EVs) have rapidly gained popularity, emerging as a key component of cleaner 

transportation systems. In the USA, the adoption of various EV types has grown substantially in 

recent years. However, the expansion of this market faces the significant challenge of limited 

charging infrastructure in both residential and commercial areas. This project aims to determine 

the optimal number and placement of charging stations needed to support EVs at residential and 

commercial locations, considering market penetration rates and the adoption of household 

charging infrastructure. The developed model is applied to the Baltimore Metropolitan Statistical 

Area (MSA) to assess the required number of charging stations. By integrating real-world Origin-

Destination (OD) trip data with census data, the study explores the relationship between residential 

and commercial EV charging infrastructure. Through scenario analysis for market penetration 

rates of 0.09%, 0.75%, 1.61%, 5%, 7.5%, and 10%, the study reveals a clear inverse relationship 

between the availability of residential charging facilities and the demand for commercial chargers. 

Additionally, the study focuses on the optimal placement and distribution of commercial EV 

charging stations within the Baltimore MSA, specifically examining a market penetration rate of 

0.7%, which represents 15,350 EVs and 7,600 EV-equipped households. Utilizing a bi-level 

optimization model, the study seeks to balance the interests of charging station investors with EV 

user satisfaction by maximizing profits and minimizing charging costs. The model also considers 

the constraints imposed by the capacity and additional load placed on the power network. The 

analysis indicates a significant reduction in the need for commercial charging stations as household 

adoption of residential chargers increases, particularly at higher States of Charge (SoC). These 

findings emphasize the importance of a balanced approach to residential and commercial charging 

infrastructure, offering valuable insights for policymakers and utility providers in developing 

sustainable EV charging strategies. By considering market penetration rates, household adoption 

of charging facilities, and optimal SoC management, this approach provides a robust framework 

for fostering greater EV adoption and advancing environmental sustainability.  



iv 

 

 

Contents 
Abstract .......................................................................................................................................... iii 

List of Figures ................................................................................................................................. v 

List of Tables ................................................................................................................................. vi 

Chapter 1. Introduction ................................................................................................................... 1 

1.1. Research Background .......................................................................................................... 1 

1.2. EV Charging Planning ......................................................................................................... 2 

1.3. EV Charging Location Optimization ................................................................................... 2 

Chapter 2. Literature Review .......................................................................................................... 4 

Chapter 3. Methodology ................................................................................................................. 9 

3.1. Background .......................................................................................................................... 9 

3.2. Travel Demand................................................................................................................... 11 

3.3. EV Profile .......................................................................................................................... 11 

3.4. Charging Infrastructure Capacity ....................................................................................... 13 

3.5. Monte Carlo Simulation ..................................................................................................... 13 

3.6. Bi-level Optimization ......................................................................................................... 18 

Sets and Parameters .............................................................................................................. 18 

Decision variables ................................................................................................................. 19 

Upper-level model ................................................................................................................ 19 

Lower Level .......................................................................................................................... 20 

Constraints ............................................................................................................................ 20 

Chapter 4. Results Discussions ..................................................................................................... 22 

4.1 Current Market Penetration ............................................................................................. 22 

4.2. Future Market Penetration ............................................................................................. 25 

4.3. Bi-Level Optimization: 0.70% Market Penetration Rate ............................................... 28 

Chapter 5. Conclusions ................................................................................................................. 34 

References ..................................................................................................................................... 37 

 

  



v 

 

List of Figures 

Figure 1. Study Area ....................................................................................................................... 9 
Figure 2. Model Overview ............................................................................................................ 10 
Figure 3. PIEVs as a Percentage of All Vehicles Registered in Each Maryland County as of August 

2021 (109) ..................................................................................................................................... 12 
Figure 4. Flowchart Depicting EV Load Estimation in the Daily Routine Estimation Process ... 14 
Figure 5. Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV Market 

Penetration Rate = 0.09% ............................................................................................................. 23 
Figure 6. Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV Market 

Penetration Rate = 0.75% ............................................................................................................. 24 
Figure 7. Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV Market 

Penetration Rate = 1.61% ............................................................................................................. 25 
Figure 8. Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV Market 

Penetration Rate = 5% .................................................................................................................. 26 
Figure 9. Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV Market 

Penetration Rate = 7.5% ............................................................................................................... 26 
Figure 10. Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV 

Market Penetration Rate = 10% .................................................................................................... 27 
Figure 11. Number of Commercial Charging Stations for Different Market Penetration Rates, 

Households with Chargers = 50% ................................................................................................ 28 
Figure 12 Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV Market 

Penetration Rate = 0.70% ............................................................................................................. 29 
Figure 13 Distribution of Commercial EV Charging Stations in the Baltimore MSA for 90% 

Residential Charging Facilities ..................................................................................................... 30 
Figure 14 Distribution of Commercial EV Charging Stations in Downtown Baltimore City for 60% 

Residential Charging Facilities ..................................................................................................... 31 
Figure 15 Distribution of Commercial EV Charging Stations in Annapolis  for 60% Residential 

Charging Facilities ........................................................................................................................ 32 
Figure 16 Distribution of Commercial EV Charging Stations in Columbia  for 60% Residential 

Charging Facilities ........................................................................................................................ 32 
  



vi 

 

List of Tables 

Table 1: Round 10 Cooperative Forecasts Attributes (106) ......................................................... 11 
Table 2: Vehicle Ownership Data in the State of Maryland (2009) (107) .................................... 12 
Table 3: Total Number of EVs for Different Market Penetration Rates in the Baltimore MSA .. 13 
Table 4: MCS Pseudocode for EV Charging Algorithm .............................................................. 16 
Table 5 Weekly Profit Margin for Commercial Charging Stations for 0.70% EV Market 

Penetration Rate ............................................................................................................................ 33 
 



1 

 

Chapter 1. Introduction 

1.1. Research Background 

Electric vehicles (EVs) have gained significant popularity and become an attractive option for 

cleaner transportation systems. The market adoption of different types of EVs in the USA has 

grown considerably in recent years. One of the challenges for such a growing market is the limited 

charging infrastructure in both residential and commercial spaces. This project aims to study the 

optimal number and placement of charging stations required to accommodate EVs at both 

residential and commercial locations, depending on the market penetration rate and the adoption 

of charging infrastructure in households. 

The transportation sector's increasing energy consumption and subsequent environmental 

pollution have led to a growing focus on promoting more sustainable and energy-efficient vehicles. 

Both government and private sectors are exploring EVs as a viable solution, as EVs offer greater 

energy efficiency (1, 2) and lower emissions (3) compared to conventional fossil fuel vehicles. 

The market offers several types of EVs (4), including Hybrid Electric Vehicles (HEVs), Battery 

Electric Vehicles (BEVs), and Plug-In Hybrid Electric Vehicles (PHEVs). The latter two types can 

also be classified as Plug-In Electric Vehicles (PIEVs). PIEVs provide the convenience of charging 

from electric outlets. Despite having larger battery capacities and more powerful electric motors 

than traditional HEVs, PIEVs still face limitations in driving range due to battery capacity and 

energy efficiency constraints (5). Moreover, drivers' anxiety about driving range significantly 

influences the adoption of EVs (6, 7). Therefore, expanding the existing charging infrastructure 

and establishing additional charging facilities is crucial to meet the growing demand (8). As the 

number of EVs continues to grow, there is an urgent need to enhance the charging infrastructure 

to accommodate the increasing charging requirements (9, 10). 

EV charging infrastructure is typically categorized into residential and commercial types. 

Residential charging has proven to be a practical, efficient, and cost-effective solution, especially 

for early EV adopters when commercial charging infrastructure was less prevalent. Conversely, 

commercial charging facilities offer significant benefits to EV users by providing fast charging 

options and enabling extended driving ranges. While previous studies have explored the impact of 

EV Charging Stations (EVCS) in both commercial and residential contexts separately, the 

interplay between residential charging availability and the demand for commercial charging 

stations remains under-researched. Despite recognizing that the availability of residential charging 

can influence the need for commercial infrastructure, a significant gap persists in both qualifying 

and quantifying this impact. This paper seeks to address this critical gap by analyzing how the 

presence or absence of residential charging facilities affects the demand for commercial charging 

infrastructure, taking into account various charging patterns. Using traffic networks and EV 

profiles from Baltimore, Maryland, as a case study, the research aims to derive insights into the 

dynamics of EV charging demand. Additionally, the results will provide a preliminary 

understanding of how different market penetration rates of EVs impact this relationship. 
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1.2. EV Charging Planning 

In the first phase of this project, the planning of EV charging stations typically involves three 

key steps: forecasting EV charging demand, modeling the location and size of charging stations, 

and solving the planning model. Existing methods for forecasting EV charging demand include 

the Monte Carlo load forecasting model based on the charging period (11), forecasting models 

based on trip chains considering temporal and spatial distribution (12), and statistical load 

forecasting models based on charging probability (13). Additionally, some studies have examined 

the search behavior, navigation patterns, and usage habits of EV users, leading to the development 

of a charging demand evaluation method grounded in Bayesian reasoning (14). 

In the context of charging station location and sizing models, this research takes into account 

the interests of key stakeholders, including charging station investors, EV owners, and the 

distribution network. Various models are designed to achieve different objectives, such as 

maximizing the annual traffic flow captured by fast charging stations while minimizing total 

investment costs and energy losses (15). Some models focus on multi-objective bi-level planning 

(16), optimizing both economic factors and the security and power quality constraints of the 

distribution network (17). To solve these models, a range of methods are employed, including grid-

based and Voronoi diagram algorithms (18), particle swarm optimization algorithms (19), and 

genetic algorithms (20). 

However, practical challenges extend beyond merely ensuring returns for investors. The 

overall economic benefits and service satisfaction are significantly influenced by factors such as 

the cost of charging, which is affected by EV user preferences, charging queue times, travel 

distance, power availability, and pricing. To address these complexities, this study proposes a bi-

level optimization model that integrates the interests of both charging station investors and EV 

users. The upper level of the model focuses on maximizing the profitability of charging stations, 

while the lower level is dedicated to enhancing user satisfaction by minimizing charging costs and 

optimizing charging schedules. 

1.3. EV Charging Location Optimization 

In the first phase of this research, the required number of commercial charging stations was 

determined based on the percentage of the population with access to residential charging facilities 

and their charging behavior (21). The second phase focuses on optimally locating these charging 

stations using a bi-level optimization approach. The bi-level programming model developed in this 

phase ensures the efficient utilization of charging infrastructure by balancing the needs of EV users 

with the operational constraints of the charging stations. This approach integrates the interests of 

both charging station investors and EV users, aiming to optimize overall economic costs while 

enhancing user satisfaction with the charging service. 

The developed model is applied to the Baltimore Metropolitan Statistical Area (MSA) to 

determine the optimal number of charging stations needed. This study integrates real-world Origin-
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Destination (OD) trip data with census data to explore the relationship between residential and 

commercial EV charging infrastructure. By conducting scenario analyses for market penetration 

rates of 0.09%, 0.75%, 1.61%, 5%, 7.5%, and 10%, the study illustrates how the demand for 

charging infrastructure shifts with varying levels of EV adoption. The findings reveal a clear 

inverse relationship between the availability of residential charging facilities and the demand for 

commercial chargers. 

Additionally, this study examines the optimal placement and distribution of commercial EV 

charging stations within the Baltimore MSA, with a focus on a market penetration rate of 0.7%, 

representing 15,350 EVs and 7,600 EV-equipped households. Using a bi-level optimization model, 

the research aims to align the interests of charging station investors with the satisfaction of EV 

users by maximizing profits and minimizing charging costs. The analysis shows significant 

reductions in the need for commercial charging stations as household adoption of residential 

chargers increases, particularly at higher States of Charge (SoC). 

These insights underscore the importance of balancing residential and commercial charging 

infrastructure to meet the evolving needs of EV users. Policymakers and utility providers can 

leverage these findings to formulate sustainable EV charging strategies, taking into account market 

penetration rates, household adoption of charging facilities, and optimal SoC management to 

reduce reliance on commercial infrastructure. This comprehensive approach offers a robust 

framework for developing sustainable EV charging networks, thereby fostering greater EV 

adoption and contributing to environmental sustainability. 
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Chapter 2. Literature Review 

2.1. Residential and Commercial Charging Stations 

EV charging infrastructure is typically categorized as residential or commercial. Residential 

charging has served as a practical, efficient, and cost-effective solution, particularly for early EV 

adopters when commercial charging infrastructure was not widespread. On the other hand, 

commercial charging facilities benefit EV users by providing fast charging and extended driving 

range. Studies indicate that between 50% to 80% of all PIEV charging events occur at home, 

underscoring its predominance in the EV charging landscape (22). Residential charging 

infrastructure primarily consists of Level 1 and Level 2 charging systems, each catering to different 

needs; Level 1 typically provides slower charging speeds suitable for overnight use, while Level 

2 offers faster rates appropriate for faster charging during shorter parking periods (23). The 

preference for residential charging is primarily driven by its convenience and cost-effectiveness, 

further supported by installation subsidies (24) and time-of-use electricity tariffs, which make 

overnight charging more economical (25, 26). Many countries provide subsidies to encourage EV 

owners to install residential chargers. For instance, the Maryland Energy Administration (MEA) 

offers the Maryland EV Charging Station Rebate Program (27), which offers rebates for acquiring 

and installing eligible EV charging stations. However, the feasibility of installing residential 

charging is contingent upon the driver having access to dedicated off-street parking, such as a 

driveway or garage. 

Introducing widespread residential charging infrastructure might pose other challenges as well. 

Charging patterns could concentrate during peak hours, potentially straining the power grid (28–

31). Furthermore, difficulty accessing charging facilities may arise due to traffic constraints (32), 

power constraints (33), or both (34, 35). Despite the focus on residential charging, the deployment 

of commercial infrastructure remains crucial, especially for long-range BEV owners who depend 

on the availability of fast charging along travel corridors to alleviate range anxiety during longer 

trips (36–38). 

Commercial charging facilities are typically located at sites where vehicles are parked for 

extended periods, such as shopping centers, airports, hotels, government offices, and various 

commercial establishments (39). Additionally, fast commercial chargers are commonly found 

along highway corridors (40, 41). These facilities play an important role in shaping the landscape 

of EV adoption by offering fast and convenient charging solutions for EV owners. The evolution 

of commercial charging infrastructure is critical to the widespread adoption of EVs. Studies have 

explored various strategic approaches to optimize commercial electric EVSE placement and 

economics, such as clustering techniques and flow-capturing location models, to maximize EV 

accessibility and usage of charging stations (42–46). These studies underscore the importance of 

strategic site selection in metropolitan areas to enhance service coverage and operational efficiency 

(47–49). Moreover, real-world driving data has been used to simulate recharging demands, aiming 
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to minimize missed trips and optimize the commercial charging network (36, 50). These strategies 

emphasize the critical need for strategic placement of charging facilities to cater effectively to the 

growing number of BEV users. Furthermore, recognizing the importance of integrating behavioral 

responses into planning, some studies have explored activity-based approaches to refine the 

location strategy of commercial chargers, considering potential users' daily routines and route 

choices (51–53). This understanding aids in developing a charging infrastructure that aligns with 

current demand and anticipatory growth patterns. 

Despite their higher cost compared to residential charging options, commercial charging 

facilities are essential in addressing the increasing demand for EV charging infrastructure, 

particularly in urban areas with higher EV adoption rates. In the United States, urban or densely 

populated regions tend to have concentrated EV ownership, where approximately 82% of all EV 

sales in 2015 took place within the fifty most populous metropolitan areas (54). This urban 

concentration poses a challenge, especially for urban residents living in apartment-style housing, 

as access to off-street parking and residential EV charging may be limited, hindering EV adoption 

(55). However, the limited availability of commercial charging facilities remains a significant 

obstacle to widespread EV adoption (56).  

To address this challenge, governments have recently enacted legislation to accelerate the 

expansion of commercial charging infrastructure in urban areas, intending to meet the growing 

demand for EV charging and enable efficient system management (57). Governments aiming to 

promote the development of commercial charging networks must strategize efficient ways to 

invest in the necessary infrastructure while being mindful of the challenge of achieving 

profitability. As mentioned earlier, a significant portion of EV charging currently takes place at 

home. However, this trend may shift as commercial charging infrastructure becomes more readily 

accessible and as EV utilization grows, leading to changes in driver needs and behaviors. Empirical 

studies have demonstrated that the utilization of various charging infrastructures changes notably 

as EV adoption increases (58–61). Therefore, analyzing driver profiles and behaviors is crucial to 

making informed decisions regarding charging investments. 

2.2. Charging Location Optimization 

The impact of EV owners on the charging system has led to the development of incentive programs 

(62–64). However, substantial groundwork is required to ensure that charging system management 

caters to the needs of both service providers and consumers. A significant body of different and 

separate studies on EV networks and charging systems examines the EVCS site selection based on 

multiple qualitative and quantitative factors (65). This body of work provides valuable insights 

into various aspects of EV charging infrastructure, including system design, management 

strategies, stakeholder engagement, and incentive programs. These studies give a deeper 

understanding of the challenges and opportunities of establishing a robust and sustainable EV 

charging ecosystem. 



6 

 

Site selection for EV commercial charging stations has become a significant research area due 

to the necessity of charging infrastructure to support EV adoption and mitigate range anxiety. The 

siting problem is approached from multiple perspectives, including company-driven and 

government-driven initiatives. From the company perspective, Location Routing Problems (LRP) 

integrate routing plans with charging station locations. For instance, Yang and Sun (66) introduced 

an LRP for battery swap stations, while Li-ying and Yuan-Bin (67) explored multiple charging 

station LRPs with time windows. Goeke et al. (68) improved solutions for battery swap station 

LRPs using adaptive variable neighborhood search algorithms. Government approaches tend to 

focus on deploying commercial recharging infrastructure to boost EV market penetration. Mak et 

al. (69) developed robust optimization models for battery-swapping infrastructures, and Xi et al. 

(70) applied a simulation-optimization model to locate EV chargers in central Ohio. Other studies 

(36, 71, 72) utilized large-scale trajectory data and geospatial modeling to evaluate and develop 

commercial charging infrastructure. Li et al. (73) developed a multi-period, multi-path refueling 

location model to expand commercial EV charging networks, dynamically satisfying growing 

origin-destination trips in the EV market (74, 75). 

Different optimization techniques have been employed to tackle the charging station siting 

problem. Meng et al. (76) utilized geographic area theory to analyze regional layout characteristics 

for planning charging station locations , providing insights into spatial distribution patterns. Wu et 

al. (77) proposed a Triangular Intuitionistic Fuzzy Number (TIFN)-based structure considering 

economic, social, environmental, and planning factors. Ademulegun et al. (78) developed a 

strategy incorporating technical-physical-socio-economic factors, which demonstrated the 

importance of a holistic approach to planning. He et al. (79) compared models like the ensemble 

coverage model and the p-median model, with the p-median model demonstrating superior results 

in optimizing station locations for maximum coverage. While these studies contributed 

significantly to EV charging infrastructure planning, several limitations persisted, including the 

inability to incorporate dynamic traffic flows, handle large real-time datasets, and address multiple 

conflicting objectives. This study addresses these challenges by combining real-world Origin-

Destination (OD) data with Monte Carlo Simulation (MCS) to model charging behavior 

dynamically, incorporating power load constraints, and employing a multi-objective bi-level 

optimization approach to balance profitability and charging costs. 

Pan et al. (80) created a siting model to maximize EV drivers' current activities, and Cao et al. 

(81) used a probability calculating model to forecast charging load and minimize user travel costs. 

Bai et al. (82) applied a non-dominated ranking genetic algorithm (NSGA-II) combined with linear 

programming and neighborhood search, achieving high efficiency in multi-objective 

optimizations. Krol and Sierpinski (83) used a genetic algorithm and fuzzy logic for a medium-

sized city case study, underscoring the need for a flexible, heuristic-based approach. While these 

studies provided valuable insights into user-centric optimization and heuristic methods, their 

application was limited when scaling to larger metropolitan areas, handling the complexity of 

multi-objective systems, and integrating both residential and commercial charging needs. This 
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study addresses these challenges by employing a scalable bi-level optimization model that 

integrates real-world OD data, balancing system profitability and user satisfaction, and 

incorporating both residential and commercial charging demands. 

Yi et al. (84) developed a modified geographic PageRank (MGPR) model to estimate charging 

demand based on trip OD and social parameters. Wang et al. (85) utilized artificial intelligence 

(AI) to evaluate urban EV driving routes and determine charging station locations. Bi-level 

optimization has also been prominently featured in EV charging station siting research. For 

instance, Janjic et al. (86) used a p-median approach with hierarchical analysis to optimize 

construction cost, charging station distance, parking, and distribution network. Hodgson (44) and 

Kuby and Lim (47) introduced flow capture models considering EV range constraints, although 

they faced limitations with fixed service radii and single-objective optimizations. Despite the 

contributions of these studies, limitations remain in terms of reliance on static demand estimates, 

high computational requirements, and single-objective optimizations. This study addresses these 

limitations by adopting dynamic demand models, utilizing MCS for demand estimation to ensure 

computational efficiency, and employing a bi-level optimization framework that balances investor 

profits with user satisfaction through multiple objectives, optimizing both profitability and user 

convenience under different market penetration scenarios.Recent studies aim to address these gaps 

by integrating multiple subjects and objectives—for example, Meng et al. (76) proposed an 

asymptotic coverage model and a multi-objective NSGA-II was used to maximize system benefits 

and coverage level. Multiple studies (35, 87–90) investigated various factors in planning EV 

charging stations, considering traffic constraints, EV user distribution, and the relationship 

between traffic flow data, the grid, and the traffic network. 

Incorporating renewable energy sources and storage devices into EV charging infrastructure 

planning has gained traction. Previous research (91–99) explored integrating photovoltaic (PV) 

and wind power, reducing operating costs and improving renewable energy consumption rates. 

Moreover, fast charging technology has driven the need for comprehensive planning of charging 

stations with varying rates. However, these studies did not fully explore the implications of 

integrating renewable sources with power grid constraints and EV charging patterns, a gap that 

this study seeks to address by factoring power load constraints directly into the bi-level model. 

This ensures that charging stations can operate efficiently under different energy-sourcing 

conditions while maintaining grid stability. 

Zeb et al. (100) focused on this by planning three-level charging posts. Mixed-integer quadratic 

Constraint Programming (MIQCP) models have been proposed to coordinate traffic and 

distribution networks, energy storage systems, and fast charging stations (101). As proposed by 

Zeng et al. (102), bi-level programming models have also emerged, employing Karush-Kuhn-

Tucker (KKT) conditions, McCormick relaxation, and Big M methods to solve these problems 

effectively. He et al. (103) further extends functionality with integrated power station models. 

While these studies have made significant contributions, limitations remain in addressing real-time 

grid fluctuations, computational complexity, and dynamic EV usage patterns. This study addresses 
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these issues by incorporating dynamic pricing, simplifying constraints for faster computation, and 

integrating real-time traffic data and energy storage systems to optimize charging station 

placement and operation. 

The extensive body of research highlights the need for sophisticated optimization techniques 

and multi-faceted approaches to plan and deploy EV charging infrastructure effectively. 

Addressing user preferences, economic factors, renewable energy integration, and advanced 

optimization methods remains crucial for advancing EV adoption and infrastructure development. 
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Chapter 3. Model Development 

3.1. Study Site Selection 

To model the impacts of residential charging facilities on the demands of commercial charging 

infrastructure, the Baltimore-Columbia-Towson Metropolitan Statistical Area (MSA), commonly 

referred to as the Baltimore MSA, was selected as the study site. The Baltimore MSA comprises 

six counties and one independent city, namely Anne Arundel, Baltimore City and County, Carroll, 

Harford, Howard, and Queen Anne's, with a combined population of approximately 3 million 

(104). Figure 1 Error! Reference source not found.illustrates the study area.  

 

Figure 1. Study Area 

This study employs Monte Carlo Simulation (MCS) to model the stochastic EV charging 

demand using static travel demand and EV profiles. This approach addresses the inherent 

complexity and stochasticity arising from diverse travel patterns, EV characteristics, and the 

capacity of charging infrastructure. The EV travel demand is determined using collected real-world 

Origin-Destination (OD) trip data, travel surveys, and travel demand forecasting models. EV 

profiles, such as EV market penetration rate, EV driving range, and charging infrastructure 
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capacity, are obtained from relevant standards and literature. 
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Figure 2 below provides an overview of the modeling, along with the datasets employed in 

this study. 
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Figure 2. Model Overview 
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3.2. Travel Demand 

The OD trip data from the Regional Integrated Transportation Information System (RITIS)  (105) 

were employed in this study to model the demand for EV charging. RITIS is a multifunctional 

platform catering to various transportation stakeholders. The system hosts various data types, 

ranging from traffic volume, speed, and vehicle class data from sensors to crowdsourced 

information from platforms such as Waze. This OD trip data obtained from RITIS offers insights 

into trip origins, destinations, and, in some cases, the routes taken. To ensure privacy, private data 

aggregator services anonymize the OD data.  

The study collected OD data for all 1397 Traffic Analysis Zones (TAZs) in the Baltimore 

MSA. This dataset spans all seven days of the week, from 8 AM to 8 PM, covering 2018 through 

2022, focusing specifically on Light and Medium-Duty Vehicles. The OD data is integrated with 

the Baltimore Round 10 Cooperative Forecast (106) to gain further insights into the population 

movement within the study area. This forecast provides population, household, and employment 

forecasts at the TAZ 2020 level, thereby enhancing the understanding of how the population moves 

within the study area. Table 1 below shows some of the key information utilized in the analysis 

based on the forecast data. The integrated OD-Forecast data enables the modeling of travel patterns 

in the subsequent MCS. 

Table 1: Round 10 Cooperative Forecasts Attributes (106) 

Field Description 

STATEFP20 State Federal Information Processing System (FIPS) code 

COUNTYFP20 County FIPS code 

NAME 2020 TAZ name 

TAZ20 2020 Baltimore Metropolitan Council Traffic Analysis Zone number 

Pop20 2020 Population 

HHs20 2020 Number of households 

Emp20 2020 Number of jobs 

 

3.3. EV Profile 

According to the Baltimore Round 10 Cooperative Forecast data, the Baltimore MSA has 

1,097,265 households. Estimations for the total number of vehicles in this area are derived from a 

2013 paper (107), which calculates the vehicle ownership percentages in the State of Maryland 

using the data from the 2009 National Household Travel Survey (NHTS) (108). Table 2 below 

shows vehicle ownership in Maryland. This ownership distribution yields a total of 2,216,476 

vehicles within the study area. The EV market penetration rate determines the number of EVs.  
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Table 2: Vehicle Ownership Data in the State of Maryland (2009) (107) 

Vehicle Ownership 2009 Percentages 

0 car households 4.92 

1 car households 24.92 

2 car households 43.39 

3 car households 19.08 

4+ car households 7.69 

Total 100 

Average car ownership per household 2.02 

 

A comparative analysis will be conducted to examine various scenarios of current EV market 

penetration rates within the study area, drawing on a study by PlugInSites (109) comparing 

Maryland's PIEV adoption by county. The study highlighted significant differences in the number 

of PIHVs registered per 100,000 residents, particularly between suburban counties and more rural 

areas. Montgomery and Somerset counties have the highest (1.61%) and lowest (0.09%) 

percentages of PIEVs (Figure 3), respectively, with 0.75% representing the average EV adoption 

rate in the state. 

 

Figure 3. PIEVs as a Percentage of All Vehicles Registered in Each Maryland County as of 

August 2021 (109) 

The study will further explore the implications of hypothetical market penetration rates of 5%, 

7.5%, and 10% to forecast future trends in charging facility requirements. Table 3 below 
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summarizes the estimated number of EVs for each market penetration rate based on the spreadsheet 

data: 

Table 3: Total Number of EVs for Different Market Penetration Rates in the Baltimore 

MSA 

Market Penetration Rate 

(%) 

Number of 

EVs 

Market Penetration Rate 

(%) 

Number of 

EVs 

0.09 1,974 5 109,250 

0.75 16,450 7.5 164,125 

1.61 35,305 10 219,281 

 

3.4. Charging Infrastructure Capacity 

In the USA, various types of EV charging equipment offer different charging rates. The common 

EV charging equipment rating system includes Level 1 for slow charging (1.3 – 2.4 kW), Level 2 

for semi-fast to fast charging using AC power (3 – 19 kW), and Level 3 (150 – 200 kW) for DC 

fast charging (DCFC) (110). Level 1 chargers, utilizing a standard residential 120-volt AC outlet, 

typically require around 40 to more than 50 hours to  charge a BEV to 80% from empty or 5 to 6 

hours for a PHEV. Level 2 chargers, commonly found at home, workplaces, and commercial 

charging stations, provide faster charging through 240V (residential) or 208V (commercial) 

electrical service, capable of charging a BEV to 80% in 4 to 10 hours or a PHEV in 1 to 2 hours. 

Conversely, DCFC equipment installed along busy routes can charge a BEV to 80% in 20 minutes 

to an hour, although most PHEVs are incompatible with DCFC chargers. The driving range added 

per hour is 3-5 miles, 18-28 miles, and 100-200 miles for levels 1, 2, and 3 chargers, respectively 

(111). 

Commercial charging facilities are assumed to provide Level 2 and Level 3 chargers. This 

study considers sample vehicles with an average driving range of around 205 miles (112). Vehicles 

in the study follow a stochastic process to select charging facilities along their route based on their 

state of charge (SoC) and trip length. It is assumed that only one EV can charge at home, while 

commercial charging facilities can simultaneously charge at least four EVs (113). 

3.5. Monte Carlo Simulation 

Recent studies have employed probabilistic models to explore EV charging patterns (114, 115). In 

contrast to the conventional deterministic approach, probabilistic models recognize the inherent 

stochastic nature of EV users' travel behavior and charging patterns, providing a more realistic 

representation of real-world scenarios. Extensive testing and comparisons with deterministic 

approaches have confirmed the superior performance and accuracy of the probabilistic model in 

capturing the true nature of EV charging patterns. As one model incorporating stochastic elements, 

EV trips, and charging events are generated using MCS by sampling from probability distributions 



16 

 

for key parameters. This approach enables the simulation to capture a wide range of possible 

scenarios, allowing for flexibility in modeling diverse trip characteristics, charging strategies, and 

charging system configurations. Several important factors are considered in MCS, including travel 

frequency, trip length, vehicle speed, trip purpose, trip departure times, availability of residential 

charging options, etc.  

Using travel demand data, the MCS first estimates the total number of daily EV trips as a 

percentage of the total trips, acknowledging that not all EVs make trips every day. The travel 

distances and times are determined for each trip purpose, and the likelihood of Home-Based Non-

Work (HBNW) and Home-Based Other (HBO) trips following Home-Based Work (HBW) trips 

is incorporated. The simulation then computes travel distances for each category. Departure and 

arrival times are generated within 24 hours using random sampling techniques considering peak-

hour congestion, reflecting realistic traffic conditions. This comprehensive approach allows for an 

in-depth analysis of daily EV travel patterns and charging requirements. Charging durations and 

locations—whether residential or commercial—are simulated using stochastic factors, such as 

charging power levels.  

By executing the MCS iteratively for a large number of trials, a comprehensive understanding 

of EV behavior and charging infrastructure utilization is attained. Figure 4 below outlines the 

process. The MCS outputs two key sets of EV charging events: one for charging events at home 

and another for charging at commercial charging facilities along travel routes. Each set captures 

diverse charging behaviors and their implications on the demand for commercial charging 

infrastructure. The simulation also explores the impacts of different levels of EV market 

penetration. 

 

Figure 4. Flowchart Depicting EV Load Estimation in the Daily Routine Estimation 

Process 

The first step is understanding trip duration, which is crucial for determining the battery usage 

of EVs. The integrated OD-Forecast data enables the calculation of trip lengths based on trip 

purposes, as different types of trips often vary in travel distance or time. Commuting trips to work 

or school typically exhibit shorter durations, while longer trips are commonly associated with 

leisure and vacation activities. Household travel survey datasets are utilized to facilitate this 

categorization of the daily trips based on their purpose (116). For this study, three broad categories 

of trips originating from residential locations are considered: 
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1. HBW: This category includes trips to work or school; i.e., primarily routine trips. The average 

duration of these trips tends to be shorter than other categories. 

2. HBNW: Trips falling under this category are routine, including shopping or running errands. 

The average length of these trips is typically longer than HBW trips. 

3. HBO: This category primarily covers leisure and vacation-related trips. Trips in this category 

are the longest among the three mentioned above. 

The Euclidean distances between the OD pairs are used to measure trip length, given the lack 

of detailed route data in the study area. Because the exact purposes of trips (such as work or non-

work) cannot be determined from the available data, this study organizes trips by their distances. 

For practical purposes, trips shorter than 15 miles are categorized as HBW, between 15 and 30 

miles as HBNW, and those over 30 miles as HBO. This approach is based on the assumption that 

shorter trips are likely for daily commutes or routine activities, while longer trips could serve other 

purposes. This method offers a logical way to group trips based on length without more specific 

data about their purpose. The geographical coordinates of TAZ centroids are used to calculate 

these trip distances. Intra-zone trips, resulting in zero-mile distances, are filtered out before the 

remaining trips are categorized into HBW, HBNW, and HBO. 

Similarly, vehicle speeds are assumed to follow a normal distribution (117) for each trip 

category, with means speeds of 30, 40, and 55 mph, respectively. The rationale behind this 

assumption is that since most HBW trips are short, they predominantly traverse local roads with 

lower speed limits. In contrast, HBNW and HBO trips traverse highways with higher speed limits 

to some extent. The study employs these speeds to calculate travel times based on travel distances, 

which are used later in estimating departure times, arrival times, and other important information 

for the MCS.  

The subsequent step involves determining the number of daily EV trips (114). This study 

assumes that EVs have the possibility to undertake multiple trips within a single day. Therefore, 

the total number of EVs within the study area may not equal the number of charging events 

occurring within the same timeframe. To address this, MCS incorporates risk factors into the 

quantitative analysis. This approach facilitates the consideration of uncertainties by generating 

distributions that represent probable outcome values. The probabilities associated with specific 

trip purposes are formulated using Equations (1) and (2). 

N(u) = EVtot ∗ Navg ∗ y(u), where ∀u= 1, 2, … , Up                                                                    (1) 

y(x) =  ∏ ρ(r)
[x=r]Up

r=1                                                                                                                         (2) 

where ρ(r)  is the probability of a trip occurring with the purpose r ; x  is an integer variable 

satisfying [x = r]; Up, N(u), and Navg represent the number of trip purpose categories, the number 

of trips for the category u, and average daily trips, respectively. EVtot  denotes the total number of 

EVs in the study area. 



18 

 

The departure, arrival, and travel times are computed for each trip simulated by the MCS. A 

congestion factor will be incorporated into the travel time to account for increased travel times 

during peak periods (8-9 AM and 5-6 PM). This factor is estimated using the travel time index for 

the Baltimore MSA (Bureau of Transportation Statistics 2024). Upon the completion of a trip, the 

State of Charge (SoC) of an EV is reduced due to the energy consumed during the trip. The SoC 

after the trip is then estimated based on the initial SoC and the total travel time. For EV owners 

with residential charging options, two scenarios with different initial SoCs (i.e., the SoC before 

the daily trips) of 80% or 50% of the full charge are assumed. The 80% SoC reflects the optimal 

charge level that balances battery health and driving range (118), while 50% SoC represents a 

typical threshold for ensuring sufficient charge for immediate trips without causing range anxiety 

(28). For those without residential charging options, the initial SoC is assumed to be 50%, 

considering the cost and time required for charging at commercial stations. The comparison 

between the remaining charge in the EV battery and the EV owner’s charge threshold determines 

whether the vehicle can continue with other trips or requires charging at commercial charging 

facilities before the next trip. This study assumes that EVs with less than 30% (28) charge will 

actively seek out commercial charging facilities to recharge.  As a result, the number of EV 

charging events at commercial facilities along the route can be calculated. 

Ultimately, the required number of commercial chargers needed under various residential EV 

charging infrastructure adoption scenarios is determined. Firstly, scenarios with various 

"residential charging percentages," representing the percentage of EV owners installing residential 

chargers, ranging from 0% to 100%, are examined. For each residential charging percentage, the 

proportion of households with EVs is computed using the EV penetration rate and the total number 

of households. As discussed earlier, the initial SoC for residential charging is set to either 80% or 

50% for each scenario. Subsequently, the total number of residential chargers is obtained by 

multiplying the number of EV-owning households by the corresponding residential charger 

percentage, reflecting the expected deployment of residential charging infrastructure. Once the 

number of residential chargers is determined, the remaining EV charging events requiring 

commercial charging are identified. This includes charging events at commercial facilities along 

the route due to low SoC, and originally, residential charging events were replaced by commercial 

charging due to the absence of residential charging options. Charging at commercial facilities 

involves selecting the charger level, with 82% using Level 2 chargers and 18% using Level 3 

chargers. The range added per hour is calculated based on the selected charger level. The required 

charging time to reach the next trip or to full capacity is then calculated. Finally, the total number 

of commercial chargers is computed by dividing the EV charging events necessitating commercial 

charging by the chosen charging capacity.  

Table 4 below provides the pseudocode of the MCS. 

Table 4: MCS Pseudocode for EV Charging Algorithm 

1 Define Parameters 

2 Market Penetration Rate ← x% 
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3 Total Number of Vehicles ← N 

4 Total EVs ← x% × N 

5 Results for Home and Public Charging ← [] 

6 Simulate Charging: 

7     for i in range(length(Departure Times)) do 

8         Select Charging Power and Range Added per Hour 

9         Charging Time ← EV Driving Range / Range Added per Hour 

10         Adjust Departure and Arrival Times 

11     end for 

12 Perform MCS for EVs: 

13     for i in range(Total EV Trips per Day) do 

14         Departure Times, Arrival Times, Travel Times ← Estimate Departure Arrival 

Travel Time() 

15         Results for Home and Public Charging.append((Departure Times, Arrival 

Times, Travel Times)) 

16     end for 

17 Charging EVs after Trips: 

18     Initialize Home Charging Count, Public Charging Count 

19     Set Home Charger Percentages ← [0, 0.5, 0.6, 0.7, 0.8, 0.9] 

20     for home charger percentage in Home Charger Percentages do 

21         Set Probability of Home Charging ← home charger percentage 

22         Set Probability of Public Charging ← 1 - home charger percentage 

23         Initialize SoC to either 0.8 or 0.5 

24         for result in Results for Home and Public Charging do 

25             Departure Times, Arrival Times, Travel Times ← result 

26             for i in range(length(Travel Times)) do 

27                 SoC After Trip ← Initial SoC - Travel Times[i] × n 

28                 if SoC After Trip ≥ 0.3 then 

29                     Home Charging Count++ 

30                     Initial SoC ← SoC After Trip 

31                 else 

32                     Public Charging Count++ 

33                     Select charger level (82% Level 2, 18% Level 3) 

34                     Calculate range added per hour and charging times 

35                     if i+1 < len(Departure Times) then 

36                         Adjust Initial SoC based on Gap between Trips and Charging Time 

37                         Adjust Travel Times based on Peak Traffic Congestion Hours 

38                     end if 

39                 end if 

40             end for 

41         end for 

42     end for 

43 Handle exceptions: 

44     for result in Results for Home and Public Charging do 

45         Departure Times, Arrival Times, Travel Times ← result 

46         try: 
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47             Execute the loop 

48         except: 

49             continue 

50     end for 

 

Ultimately, the first phase of this research, which involves modeling travel demand and 

charging requirements using MCS, provides a comprehensive understanding of EV behavior and 

charging infrastructure utilization. This foundation sets the stage for the second phase of the 

research: developing a bi-level optimization framework to determine the optimal locations for 

commercial EV charging stations. This framework will balance user convenience, economic 

factors, and infrastructure costs, ensuring effective deployment of charging infrastructure to meet 

growing EV demand. 

3.6. Bi-level Optimization 

This section focuses on deriving an optimal construction plan for  EV charging infrastructure 

within a designated area comprising multiple zones. The primary goals are to determine the scale, 

i.e., the number of charging piles required for each charging station, and to optimize the charging 

schedule based on predicted or actual charging demand. The model incorporates time-of-use 

electricity prices and users' flexible charging time windows. A significant aspect of this research 

is the coexistence of residential and commercial charging facilities, which potentially influences 

charging behaviors and demand patterns differently compared to scenarios with only commercial 

charging stations. A bi-level programming model is constructed to address the problem of selecting 

the location and scale of EV charging stations and scheduling their operation. The model operates 

on a weekly time scale, ensuring that all prices and demands are calculated accordingly over a one-

week period. 

Sets and Parameters 

Block Set N, the entire area is divided into n blocks: N = {1, 2, ….,n} 

Position of Each Alternative Charging Station 𝑙𝑠𝑡𝑎𝑡𝑖𝑜𝑛:   

𝑙𝑠𝑡𝑎𝑡𝑖𝑜𝑛 = {[𝑙𝑠1𝑙𝑜𝑛𝑔𝑖
, 𝑙𝑠1𝑙𝑎𝑡𝑖

] , [𝑙𝑠2𝑙𝑜𝑛𝑔𝑖
, 𝑙𝑠2𝑙𝑎𝑡𝑖

] , … , [𝑙𝑠𝑛_𝑙𝑜𝑛𝑔𝑖 , 𝑙𝑠𝑛_𝑙𝑎𝑡𝑖]} 

Charging Demand Set M: M = {1,2, … ,m} 

Charging Amount Set Q: Q = {𝑞1, 𝑞2, … , 𝑞𝑚} 

Charging Time Window Set 𝑇𝑚: 𝑇𝑚 = {[𝑡1_𝑠𝑡𝑎𝑟𝑡, 𝑡1_𝑒𝑛𝑑], [𝑡2_𝑠𝑡𝑎𝑟𝑡, 𝑡2_𝑒𝑛𝑑], … , [𝑡𝑚_𝑠𝑡𝑎𝑟𝑡, 𝑡𝑚_𝑒𝑛𝑑]} 

Charging Demand Position 𝑝𝑚: 𝑝𝑚 = {[𝑝1𝑙𝑜𝑛𝑔𝑖
, 𝑝1𝑙𝑎𝑡𝑖

] , [𝑝2𝑙𝑜𝑛𝑔𝑖
, 𝑝2𝑙𝑎𝑡𝑖

] , … , [𝑝𝑚_𝑙𝑜𝑛𝑔𝑖 , 𝑝𝑚_𝑙𝑎𝑡𝑖]} 
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Decision variables 

𝑥𝑖: Binary variable indicating if a charging station is selected in block 𝑖 (𝑥𝑖 = 1); otherwise, (𝑥𝑖 =

0). 

𝑦𝑖: Integer variable representing the number of charging piles at charging station 𝑖. 

𝑧𝑖𝑚𝑡: Binary variable indicating if EV 𝑚 will be charged in the charging station 𝑖 at time 𝑡, if yes, 

𝑧𝑖𝑚𝑡 = 1; otherwise 𝑧𝑖𝑚𝑡 = 0 

Upper-level model 

The objective of the upper-level model is to maximize the profit for the EV charging system 

infrastructure. 

maximize 𝐹 = 𝑃 − 𝐶𝑜𝑝 − 𝐶𝑐𝑜𝑛 − 𝐶𝑝 − 𝐶𝑙                                                                                          (3) 

𝑃, the charging profit, is the difference between the charging revenue and cost:  

𝑃 = 𝑅𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 − 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔                                                                                                                (4) 

𝑅𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 is the charging revenue representing the income from the charging station: 

𝑅𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = ∑ ∑ ∑ 𝑧𝑖𝑚𝑡 ∗𝑀
𝑚

𝑇
𝑡

𝑁
𝑖=1 𝑝𝑒(𝑡)                                                                                                          (5) 

where 𝑝𝑒(𝑡) is the charging price for users at the time t, and 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 is the charging cost, which 

is calculated at the lower level: 

𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = ∑ ∑ ∑ 𝑧𝑖𝑚𝑡 ∗𝑀
𝑚

𝑇
𝑡

𝑁
𝑖=1 𝑐𝑒(𝑡)                                                                                                              (6)     

𝑝𝑒(𝑡) = {
𝑐𝑒(𝑡) ∗ (1 + 𝐿𝑜𝑤 𝑀𝑎𝑟𝑘𝑢𝑝 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) 𝑖𝑓 𝑡 ∈ 𝑜𝑓𝑓 − 𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟𝑠

𝑐𝑒(𝑡) ∗ (1 + 𝐻𝑖𝑔ℎ 𝑀𝑎𝑟𝑘𝑢𝑝 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)𝑖𝑓 𝑡 ∈ 𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟𝑠
                   (7) 

where the unit electricity price at the time 𝑡 is 𝑐𝑒(𝑡) which is the time-of-use price. 

𝐶𝑜𝑝 represents the ongoing costs of operating the charging stations: 

𝐶𝑜𝑝 = ∑ 𝑥𝑖 ∗ 𝑐𝑜𝑝_𝑖
𝑁
𝑖=1                                                                                                                          (8) 

where 𝑐𝑜𝑝_𝑖 is the operation cost in a station 𝑖. 𝐶𝑐𝑜𝑛 is the construction cost, representing the costs 

of building the charging stations:  

𝐶𝑐𝑜𝑛 = ∑ 𝑥𝑖 ∗ 𝑐𝑐𝑜𝑛
𝑁
𝑖=1                                                                                                                                    (9) 

where 𝑐𝑐𝑜𝑛 is the construction cost for one charging station. 𝐶𝑝 is the cost to buy the EV chargers, 

representing the expenses to purchase the charging equipment: 

𝐶𝑝 = ∑ 𝑥𝑖 ∗ 𝑦𝑖 ∗ 𝑐𝑝
𝑁
𝑖=1                                                                                                                    (10) 
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where 𝑐𝑝 is the cost to buy one charger (level 2 and level 3). 𝐶𝑙 is the land use cost, representing 

the expenses associated with using the land for charging stations. 

𝐶𝑙 = ∑ 𝑥𝑖 ∗ 𝑐𝑙_𝑖
𝑁
𝑖=1                                                                                                                          (11) 

where 𝑐𝑙_𝑖 is the land-use cost for the charging station selected in the block 𝑖. 

Lower Level 

The lower-level model focuses on minimizing the total charging cost (𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔), providing an 

optimal charging schedule as output. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔                                                                                                                     (12) 

The total charging cost is the summary of the charging cost of all vehicles in the time period. 

𝐶𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = ∑ ∑ ∑ 𝑧𝑖𝑚𝑡 ∗𝑀
𝑚

𝑇
𝑡

𝑁
𝑖=1 𝑐𝑒(𝑡)                                                                                            (13) 

Constraints  

1. Power Load Constraint: 

Define the total power demand at time t as the sum of the power demands of all charging activities 

occurring at that time. This can be represented as: 

𝑊(𝑡) = ∑ ∑ ∑ 𝑧𝑖𝑚𝑡 ∗𝑀
𝑚

𝑇
𝑡

𝑁
𝑖=1 𝑝𝑖𝑚𝑡                                                                                                   (14) 

where 𝑝𝑖𝑚𝑡 is the power demand of vehicle m at station i at time t. The power load on the electricity 

grid should be smaller than the threshold 𝑤𝑚𝑎𝑥. 

𝑊(𝑡) ≤  𝑤𝑚𝑎𝑥 for all t                                                                                                                  (15) 

This constraint ensures that the total power demand at any given time does not exceed the 

maximum allowable power load on the grid, thus preventing overloading and ensuring a stable 

power supply. 

2. Time Window Constraint: 

All vehicles should be charged with their demanded power within the preferred time window 

[𝑡𝑚_𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑚_𝑒𝑛𝑑]. 

𝑡(𝑧𝑖𝑚𝑡) ∈ [𝑡𝑚𝑠𝑡𝑎𝑟𝑡
, 𝑡𝑚𝑒𝑛𝑑

] for all m                                                                                               (16) 

This constraint ensures that each vehicle receives the required amount of charge within its 

specified time window, respecting user preferences and availability. 

3. Facility Constraint: 

The number of chargers should satisfy the charging demand at each charging station. 



23 

 

∑ 𝑧𝑖𝑚𝑡
𝑀
𝑚 ≤ 𝑥𝑖𝑦𝑖                                                                                                                                          (17) 

for all charging stations at the time t. 

This constraint ensures that the number of charging piles available at each station is sufficient 

to meet the demand at any given time. 

The study utilizes various cost estimates and pricing data critical to the planning and 

implementation of EV charging infrastructure. Level 2 charging equipment costs range from $400 

to $6500, with average installation costs around $3000. Level 3 chargers, on the other hand, can 

cost between $10,000 and $40,000, with an average installation cost of $21,000 (119). Electricity 

rates from the Baltimore Gas and Electric Company are $0.16 per kWh for flat rates, $0.33 per 

kWh during peak times, and $0.11 per kWh during off-peak hours (120). Additionally, the average 

EV consumes around 11.81 kWh per day, translating to approximately 353.3 kWh per month and 

4,310.65 kWh per year (121). Transaction fees for commercial EVSE units using credit card 

payment systems range from 5% to 7.5% (122). Permit costs for Level 2 chargers vary from $14 

to $821, and network fees range from $100 to $900 annually, depending on the EVSE unit type 

(122). Demand charges for electricity can increase monthly utility bills by up to $2,000 (122). 

Additional costs include bollards or wheel stops ($200-$800 and $100-$200, respectively) and 

trenching costs, which can be $100 per foot. Trenching 50 feet costs around $5,000, and 100-feet 

costs about $10,000 (122). Suitable EV charging sites can be as small as half an acre (123), with 

an acre of land in Baltimore County, Maryland, costing between $50,000 and $190,000 in 2024 

(124). These numbers were crucial for making important numerical assumptions regarding the 

various costs associated with EV charging stations, including construction, land purchase, land 

use, and operating expenses. 
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Chapter 4. Results Discussions 

4.1 Current Market Penetration 

The analysis of current market penetration rates, including 0.09%, 0.75%, and 1.61%, provides 

valuable insights into the early stages of EV adoption and its implications for charging 

infrastructure. 

0.09% Market Penetration 

Figure 5 illustrates the demand for residential and commercial EV charging facilities at a 0.09% 

market penetration rate, indicative of initial EV adoption. At a 0.09% market penetration, EV 

owners rely entirely on commercial infrastructure without any residential charging options, 

resulting in the peak demand of 229 commercial charging stations. 

As household adoption of charging facilities increases, the need for commercial charging 

stations decreases significantly. When 50% of households have residential chargers, the required 

number of commercial chargers drops by 46.7%, from 229 to 122 stations. At 60% household 

adoption, the requirement for commercial chargers further declines by 55.9%, from 229 to 101 

stations. This trend continues as 70% of households adopt residential chargers, reducing the 

number of required commercial stations by 65.1% to 80 stations. At 80% household adoption, the 

demand for commercial charging stations decreases even more dramatically, dropping by 74.2% 

to 59 stations. 

In addition to the influence of household adoption rates, the SoC also plays a role in determining 

the demand for commercial charging infrastructure. Although SoC management is not the primary 

focus, it provides context for optimizing commercial charging requirements. For a 50% SoC, the 

reductions in the number of required commercial chargers are significant as household adoption 

increases. However, maintaining a higher SoC (80%) consistently results in fewer required 

commercial charging stations than lower SoC levels (50%). For instance, at 50% household 

adoption, the number of commercial chargers required for 80% SoC is 119, a 48.0% reduction 

compared to the initial 229 stations. At 60% household adoption, the requirement drops by 58.1% 

to 96 stations. When 70% of households have residential chargers, the number of required 

commercial stations for 80% SoC is reduced by 68.2% to 73 stations. At 80% household adoption, 

the requirement further decreases by 78.6% to 49 stations. 
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Figure 5. Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV 

Market Penetration Rate = 0.09% 

0.75% Market Penetration 

Figure 6 depicts an increase of the market penetration rate to 0.75%, reflecting a moderate 

adoption phase. At this level, the demand for commercial charging stations significantly decreases 

as the percentage of households with charging facilities rises. When no households have charging 

facilities, the demand remains at 1900 commercial charging stations for both 50% SoC and 80% 

SoC. 

However, as household adoption reaches 50%, the need for commercial charging stations 

decreases. At 50% SoC, 1016 stations are required, while at 80% SoC, only 984 stations are 

needed, a 3.15% reduction. At 80% household adoption, the number of required commercial 

charging stations drops from 486 at 50% SoC to 404 at 80% SoC, a 16.9% reduction. 

Overall, maintaining an 80% SoC results in a 41% decrease in the number of required 

commercial charging stations compared to a 50% SoC. This trend underscores the importance of 

increasing household adoption of residential chargers in reducing the strain on commercial 

charging infrastructure as market penetration grows. 
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Figure 6. Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV 

Market Penetration Rate = 0.75% 

1.61% Market Penetration 

At 1.61% market penetration, illustrated in Figure 7, the demand for commercial charging stations 

significantly decreases with higher household adoption of charging facilities. When no households 

have charging facilities, 4,080 commercial charging stations are needed at both 50% SoC and 80% 

SoC. 

At 50% household adoption, 50% SoC requires 2,182 stations, while 80% SoC needs 2,113 

stations, a 3.2% reduction. At 60% household adoption, the requirement drops to 1,802 stations 

for 50% SoC and 1,703 stations for 80% SoC, a 5.5% decrease. At 70% household adoption, 50% 

SoC requires 1,423 stations, and 80% SoC requires 1,287 stations, a 9.5% reduction. At 80% 

household adoption, the need decreases to 1,043 stations for 50% SoC and 866 stations for 80% 

SoC, a 16.9% reduction. Finally, at 90% household adoption, 50% SoC requires 664 stations, while 

80% SoC needs only 440 stations, a 33.7% decrease. 

These comparisons highlight that as household adoption of residential chargers increases, the 

dependency on commercial charging infrastructure decreases significantly. Higher SoC levels 

further reduce the need for commercial charging stations. 
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Figure 7. Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV 

Market Penetration Rate = 1.61% 

4.2. Future Market Penetration 

The analysis of future market penetration rates, including 5%, 7.5%, and 10%, projects significant 

growth in EV adoption and its subsequent impact on charging infrastructure requirements. 

5% Market Penetration 

At a 5% market penetration rate, EV adoption has reached a significant level, requiring substantial 

charging infrastructure (Figure 8). As household adoption of charging facilities increases, the need 

for commercial charging stations decreases markedly. With no households having charging 

facilities, both 50% SoC and 80% SoC require 12,669 commercial charging stations. 

When 50% of households have charging facilities, the demand for commercial stations drops 

to 6,776 for 50% SoC and 6,560 for 80% SoC, a 3.2% reduction. At 60% household adoption, 

50% SoC requires 5,598 stations, while 80% SoC needs 5,286 stations, a 5.6% decrease. When 

70% of households have charging facilities, the number of required commercial stations decreases 

to 4,419 for 50% SoC and 3,997 for 80% SoC, a 9.5% reduction. At 80% household adoption, 

50% SoC requires 3,240 stations, compared to 2,689 stations for 80% SoC, a 17% decrease. 

Finally, at 90% household adoption, the demand drops to 2,062 stations for 50% SoC and 1,365 

for 80% SoC, a 33.8% decrease. These results highlight that higher household adoption of charging 

facilities and maintaining an 80% SoC significantly reduce the reliance on commercial charging 

infrastructure. 
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Figure 8. Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV 

Market Penetration Rate = 5% 

7.5% Market Penetration 

At a 7.5% market penetration rate (Figure 9), EV adoption becomes more prominent, demanding 

extensive charging infrastructure. The analysis reveals significant differences between maintaining 

a 50% SoC and an 80% SoC across various levels of household adoption of charging facilities. 

When no households have charging facilities, both 50% SoC and 80% SoC require 19,010 

commercial charging stations. As household adoption increases to 50%, 50% SoC requires 10,170 

commercial charging stations, while 80% SoC requires 9,845 stations, a 3.2% decrease. At 60% 

household adoption, 50% SoC necessitates 8,402 stations compared to 7,938 for 80% SoC, a 5.5% 

decrease. When 70% of households have charging facilities, 50% of SoC requires 6,634 stations, 

while 80% of SoC needs 5,998 stations, a 9.6% decrease. At 80% household adoption, 50% SoC 

requires 4,866 stations, compared to 4,033 stations for 80% SoC, a 17.1% decrease. Finally, at 

90% household adoption, 50% SoC demands 3,098 stations, while 80% SoC requires only 2,046 

stations, a significant 34% decrease. 

 

Figure 9. Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV 

Market Penetration Rate = 7.5% 
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10% Market Penetration 

Figure 10 depicts the scenario at a 10% market penetration rate, where the extensive adoption of 

EVs necessitates a robust charging infrastructure network. The analysis highlights notable 

differences between maintaining a 50% SoC and an 80% SoC across varying levels of household 

adoption of charging facilities. With no households equipped with charging facilities, both 50% 

SoC and 80% SoC require 25,345 commercial charging stations. As household adoption reaches 

50%, the need for commercial charging stations decreases to 13,558 for 50% SoC and 13,124 for 

80% SoC, a reduction of 3.2%. At 60% household adoption, 50% SoC requires 11,200 stations, 

whereas 80% SoC reduces this to 10,580 stations, a 5.5% decrease. When 70% of households have 

charging facilities, 50% SoC necessitates 8,843 stations compared to 7,996 stations for 80% SoC, 

a 9.6% decrease. At 80% household adoption, 50% SoC demands 6,485 stations, while 80% SoC 

needs only 5,379 stations, a 17% reduction. Finally, at 90% household adoption, the requirement 

for commercial charging stations drops significantly to 4,128 for 50% SoC and 2,726 for 80% 

SoC, a 34% decrease.  

 

Figure 10. Comparison of the Number of EV Chargers (Residential vs. Commercial) for 

EV Market Penetration Rate = 10% 

These comparisons illustrate that as more households are equipped with residential charging 

facilities, the dependency on commercial charging infrastructure diminishes significantly. The 

market penetration rate and the adoption of residential charging facilities are critical factors in 

optimizing commercial charging infrastructure. Higher market penetration rates increase the 

overall demand for chargers, but this demand can be effectively managed by increasing the 

percentage of households with residential charging facilities. This approach helps reduce the strain 

on commercial charging infrastructure and supports the efficient growth of the EV market. 

The modeling results reveal a clear trend: as the adoption of residential charging facilities 

increases, the demand for commercial chargers decreases. This relationship holds true across both 

current and future market penetration scenarios. Figure 11 below illustrates these trends, 

highlighting the critical role of residential charging infrastructure in shaping the overall charging 

landscape. Policymakers and stakeholders should consider enhancing access to residential 
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charging solutions to reduce dependence on commercial infrastructure and support the broader 

adoption of EVs. 

 

Figure 11. Number of Commercial Charging Stations for Different Market Penetration 

Rates, Households with Chargers = 50% 

Figure 11 depicts the number of commercial charging stations required at different market 

penetration rates, with 50% of households having EV charging facilities. Higher market 

penetration rates necessitate more infrastructure. For example, at a 10% market penetration rate, 

13,558 public charging stations are needed at 50% SoC, which drops to 13,124 at 80%. Similarly, 

at a 7.5% market penetration rate, 10,170 public chargers are needed at 50% SoC, reducing to 

9,845 at 80%. 

Maintaining an 80% SoC is recommended for optimal EV battery health and reducing wear, 

whereas a minimum of 50% SoC is needed to avoid range anxiety. Higher SoC reduces the need 

for frequent charging stops, thus decreasing the demand for commercial chargers. This trend is 

consistent across different market penetration rates, highlighting the importance of optimal SoC 

management. 

Both the public and private sectors must be prepared to meet the needs of EV users. The 

combined effort of public-private partnership will ensure a seamless transition to electric mobility, 

reduce range anxiety, and support the sustainable growth of the EV market. Preparing the 

necessary infrastructure, considering market penetration rates, household charging adoption, and 

SoC management, is essential for the successful adoption and use of EVs. 

4.3. Bi-Level Optimization: 0.70% Market Penetration Rate 

The second phase of this study has chosen a market penetration rate of 0.7% as it represents the 

EV market penetration rate for Baltimore City and is used as a representative figure for the 
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Baltimore MSA. At a 0.7% market penetration rate, there are 15,350 EVs in the Baltimore MSA, 

with 7,600 households having EVs. The number of commercial charging stations required varies 

significantly based on the percentage of households with residential chargers and the SoC (Figure 

12). Without residential charging facilities (0% adoption rate), 1774 commercial charging stations 

are necessary. As household adoption of residential chargers increases, the need for commercial 

stations declines. With 50% of households having residential chargers, the required number of 

commercial charging stations reduces to 919 for an 80% SoC and 949 for a 50% SoC, representing 

a decrease of 48.2% and 46.5%, respectively. When 60% of households adopt residential chargers, 

the demand drops to 741 for an 80% SoC and 784 for a 50% SoC, a reduction of 58.2% and 55.8%, 

respectively. At 70% household adoption, the requirement decreases to 561 for an 80% SoC and 

619 for a 50% SoC, reflecting a 68.4% and 65.1% decrease, respectively. With 80% household 

adoption, the need for commercial stations reduces to 377 for an 80% SoC and 454 for a 50% SoC, 

showing reductions of 78.8% and 74.4%, respectively. Finally, with 90% household adoption, only 

192 commercial charging stations are needed for an 80% SoC and 289 for a 50% SoC, an 89.2% 

and 83.7% decrease, respectively. 

These numbers provide critical insights into how residential charging infrastructure impacts 

the demand for commercial charging stations. Higher household adoption rates and higher SoC 

levels consistently result in fewer required commercial charging stations. For example, the 

transition from 50% to 90% household adoption at 80% SoC reduces by 79.1%, while at 50% SoC, 

the reduction is 69.5%. Additionally, comparing 50% SoC to 80% SoC within the same household 

adoption rate, the reductions range from 1.6% to 33.6%, highlighting the impact of higher SoC 

levels on reducing the need for commercial charging stations. 

 

Figure 12 Comparison of the Number of EV Chargers (Residential vs. Commercial) for EV 

Market Penetration Rate = 0.70% 
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To dive deeper into the previous analysis, Figure 13 below illustrates the distribution of 

commercial EV charging stations across the Baltimore MSA where 90% of households have 

residential chargers. The concentration of charging stations is significantly higher in densely 

populated and high-traffic areas such as Baltimore City. This pattern indicates the increased 

demand for charging infrastructure to support the daily commuting needs of EV users in urban 

centers. The necessity for more stations at a 50% SoC compared to an 80% SoC highlights how 

lower SoC levels lead to more frequent charging requirements, necessitating a higher number of 

stations to meet the demand effectively. 

The map also reveals that areas like Annapolis and other surrounding regions exhibit a similar 

trend but on a smaller scale. Even here, the high adoption rate of residential chargers significantly 

reduces the number of required commercial stations, underscoring the impact of residential 

charging availability on overall infrastructure needs. 

 

Figure 13 Distribution of Commercial EV Charging Stations in the Baltimore MSA for 

90% Residential Charging Facilities 

Concurrently, if 60% of households have residential chargers, urban centers like Downtown 

Baltimore City (Figure 14), Annapolis (Anne Arundel County) (Figure 15), and Columbia 

(Howard County) (Figure 16) show the separation and overlap of red and blue dots, indicating the 
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varying demand based on different SoC levels. For instance, red dots (80% SoC) are fewer and 

more spaced out than blue dots (50% SoC), reflecting that higher SoC reduces the frequency of 

required charges and, consequently, the number of stations needed. Conversely, the higher number 

of blue dots (50% SoC) shows that lower SoC levels necessitate more frequent charging, requiring 

more stations. 

The red and blue dots overlap, suggesting strategic placement of charging stations to 

accommodate varying SoC requirements, ensuring that infrastructure can effectively meet diverse 

charging needs. This also implies that while some locations are critical for all SoC levels, others 

might be specifically necessary only for lower SoC levels due to increased charging frequency. 

 

Figure 14 Distribution of Commercial EV Charging Stations in Downtown Baltimore City 

for 60% Residential Charging Facilities 
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Figure 15 Distribution of Commercial EV Charging Stations in Annapolis  for 60% 

Residential Charging Facilities 

 

Figure 16 Distribution of Commercial EV Charging Stations in Columbia for 60% 

Residential Charging Facilities 
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Additionally, the study aims to calculate the annual profit generated by each scenario. This 

involves assessing the operational costs, installation expenses, and revenues from charging 

services. The insights gained will help understand the financial viability and optimal deployment 

of commercial charging infrastructure, ensuring that the charging needs of EV users are met 

efficiently while maximizing the profitability for charging station operators. This comprehensive 

approach aids in making informed decisions regarding the costs and charges associated with EV 

charging stations, including construction, land purchase, land use, and operational expenses. The 

weekly profit margin for different commercial charging station scenarios is shown in Table 5. 

Table 5 Weekly Profit Margin for Commercial Charging Stations for 0.70% EV Market 

Penetration Rate 

Households 

with Chargers 

(%) 

No. of 

Commercial 

Charging 

Stations (0.8 

SoC) 

Profit ($) 

No. of 

Commercial 

Charging 

Stations (0.8 

SoC) 

Profit ($) 

0 1774 244817.72 1774 244817.72 

50 919 238759.19 949 238971.77 

60 741 237497.88 784 237802.58 

70 561 236222.4 619 236633.39 

80 377 234918.57 454 235464.2 

90 192 233607.66 289 234295.01 

 

Insights from industry analysis indicate that Level 2 charging stations can generate annual 

revenues ranging from approximately $8,395 to $75,600 per charger, depending on location and 

utilization rates (125). Applying standard profit margins of 15% to 35% translates to an annual 

profit per charger between $1,259.25 and $26,460. For example, the calculated weekly profit of 

$233,607.66 equates to an annual profit of $15,817.04 per charger. This is consistent with the 

higher end of industry expectations, supported by the profit margin numbers described above. 

These observations underscore the necessity of considering both SoC levels and the presence of 

residential chargers in the planning process. Strategic placement based on these factors can 

effectively balance the infrastructure needs with actual demand, preventing redundancy and 

enhancing overall network efficiency. This approach not only supports the economic viability of 

the proposed charging station network but also lays a robust foundation for further investment and 

expansion in EV infrastructure, ensuring comprehensive coverage in urban settings. 
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Chapter 5. Conclusions and Future Research  

5.1. Summary and Conclusions 

This study investigates the relationship between residential and commercial EV charging 

infrastructure using the Baltimore MSA as the study area. The detailed OD trip data integrated 

with census data provides a comprehensive understanding of EV charging behaviors and 

infrastructure requirements. The analysis highlights the critical impact of residential charging 

facilities on the demand for commercial charging stations, revealing several key findings: 

1. Inverse Relationship: A clear inverse relationship exists between the availability of residential 

charging facilities and the demand for commercial charging infrastructure. As the adoption of 

residential chargers increases, the necessity for commercial chargers decreases significantly. 

For example, at a 0.09% market penetration rate, with no households having charging facilities, 

229 commercial chargers are required. However, as household adoption of residential chargers 

reaches 80%, the demand for commercial chargers drops significantly to 59 stations, 

demonstrating a 74.2% reduction. 

2. Impact of Market Penetration: Different market penetration rates of EVs show consistent 

trends. The presence of residential chargers substantially reduces the demand for commercial 

charging facilities. This relationship holds across varying levels of EV adoption, from early 

stages to more developed markets. For instance, at a 5% market penetration rate, if no 

households have residential chargers, 12,669 commercial charging stations are needed. 

However, when 80% of households have residential chargers, the demand decreases to 2,689 

stations, a 78.8% reduction. Comparatively, at a 7.5% market penetration rate, the number of 

commercial chargers required drops from 19,010 with no residential chargers to 4,033 with 

80% household adoption, a similar 78.8% reduction. This illustrates that the presence of 

residential chargers consistently reduces commercial charging needs across different levels of 

market penetration. 

3. Impact of SoC: The analysis underscores the critical role of residential charging infrastructure 

and optimal SoC management in shaping the overall charging landscape. As EV adoption rates 

increase from 0.09% to 10%, the dependency on commercial charging infrastructure 

diminishes significantly. For example, at a 10% market penetration rate with 90% household 

adoption, maintaining an 80% SoC requires only 1,365 commercial chargers compared to 

2,062 for a 50% SoC, representing a 33.8% reduction. This trend highlights that maintaining 

higher SoC levels has the potential to reduce reliance on commercial infrastructure. 

4. Policy Implications: Policymakers should focus on promoting residential charging solutions 

through incentives and subsidies. For instance, subsidies for residential charger installations 

can reduce the pressure on commercial infrastructure. As market penetration rates increase, the 

demand for commercial chargers can be significantly alleviated if more households access 

residential charging facilities. For example, at higher market penetration rates like 10%, the 

presence of residential chargers and maintaining an optimal SoC (80%) can lead to substantial 

reductions in the need for commercial chargers. This approach encourages EV adoption and 
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ensures the infrastructure is in place to support it, making the overall EV charging ecosystem 

more efficient and sustainable. Preparing the necessary infrastructure, considering market 

penetration rates, household charging adoption, and SoC management, is essential for the 

successful adoption and use of EVs. 

5.2. Limitations and Future Research Directions 

Despite the comprehensive analysis, this study has certain limitations. The assumptions of EV 

travel behavior and charging patterns may not capture all real-world complexities. Additionally, 

the study focuses on a specific geographic area, and the findings may not be fully generalizable to 

other regions with different characteristics. Future research should explore dynamic models that 

consider real-time data on EV charging behavior and grid impacts. Integrating renewable energy 

sources with EV charging infrastructure could also provide valuable insights into creating a more 

sustainable and resilient system. Further, examining the economic aspects of charging 

infrastructure investments and their long-term benefits can help formulate effective policies and 

strategies for EV adoption. 

This study provides a foundational understanding of the interplay between residential and 

commercial EV charging infrastructures. Leveraging detailed real-world OD trip data integrated 

with census data and advanced modeling techniques offers valuable insights for policymakers, 

researchers, and stakeholders in transitioning to a sustainable EV ecosystem. The findings 

underscore the critical importance of strategic planning and optimization in deploying EV charging 

infrastructure. Through applying a bi-level optimization model, this research has provided valuable 

insights into how different levels of residential charger adoption and SoC preferences can influence 

the number and placement of commercial charging stations. 

The Baltimore MSA case study revealed that as residential charger adoption increases, the 

reliance on commercial charging stations decreases significantly. For instance, at a 70% household 

adoption rate, the number of required commercial stations for an 80% SoC was reduced by 68.4% 

compared to scenarios with no residential chargers. This trend was consistent across various SoC 

levels, highlighting the effectiveness of residential chargers in alleviating the demand on public 

infrastructure. 

Furthermore, the study illustrated the economic viability of the proposed model. The calculated 

weekly profit of $233,607.66 for 192 charging stations aligns with industry standards when 

projected annually. This demonstrates the model's capability to balance profitability for operators 

while meeting user needs. The robust framework ensures that both high and low-demand areas are 

adequately serviced, optimizing resource allocation and enhancing the overall efficiency of the EV 

charging network. 

Future research could expand on this work by incorporating more granular data on user 

behavior and preferences, leveraging machine learning algorithms for better demand forecasting. 

Additionally, integrating renewable energy sources and considering their impact on the grid could 

provide a more sustainable approach to EV infrastructure planning. Exploring the effects of 

dynamic pricing models and real-time data on charging behavior and station utilization could 

further refine the optimization model. 
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Overall, this study contributes to the growing body of knowledge on EV infrastructure 

planning, offering a scalable and adaptable methodology for cities and regions aiming to support 

the transition to electric mobility. By addressing both economic and user-centric factors, the 

proposed bi-level optimization model paves the way for more effective and efficient deployment 

of EV charging stations, ultimately supporting the broader adoption of electric vehicles.  
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