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Abstract 
This research presents a novel approach to enhancing Green Light Optimal Speed Advisory 
(GLOSA) systems by predicting signal phase and timing (SPaT) switching times and assessing the 
confidence in these predictions. The proposed architecture leverages transformer encoders, 
combined with various deep learning methods such as Multilayer Perceptrons (MLP), Long-Short 
Term Memory (LSTM) networks, and Convolutional LSTM (CNN-LSTM) networks, to form an 
ensemble of predictors. This ensemble is utilized to predict SPaT information for six intersections 
along the Gallows Road corridor in Virginia, addressing three primary tasks: predicting phase 
changes within 20 seconds, determining the exact switching time, and assigning a confidence level 
to these predictions. The experiments demonstrate that the transformer-based architecture 
outperforms traditional deep learning methods, achieving 96% accuracy in phase change 
prediction and a mean absolute error (MAE) of 1.49 seconds in exact time prediction. The 
ensemble predictions, particularly those with high consensus, are highly accurate, being within 
one second of the true value 90.2% of the time. 

In parallel, the study explores the implementation of GLOSA in proximity to actuated traffic 
signals, focusing on optimizing vehicle trajectories by incorporating real-time queue estimation 
from loop-detector and probe vehicle data. Simulation experiments evaluate the fuel savings 
potential and system performance both at the individual vehicle level and across the network. The 
results reveal substantial fuel savings of up to 35.7% for individual vehicles when considering 
queueing, with a saving of 10% for the case of an isolated intersection. However, the integration 
of queue estimation, while beneficial for individual vehicles, does not lead to significant network-
wide performance improvements. This research underscores both the advantages and limitations 
of GLOSA systems, highlighting the importance of integrating real-time traffic data to optimize 
vehicle trajectories and improve system performance in real-world traffic scenarios. 
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Introduction 
Fossil fuels continue to dominate as the primary source of energy for both household and industrial 
uses, playing a significant role in the global economy (1). However, rising concerns over the 
environmental impacts of fossil fuel consumption, which is growing at an annual rate of 2%, are 
driving efforts to mitigate these effects. The combustion of fossil fuels, particularly in the 
transportation sector—which accounts for 28% of total energy consumption in the U.S. (2)—
contributes significantly to greenhouse gas emissions, leading to global warming that has already 
exceeded 1°C (3). In response, strategies such as eco-driving have been promoted, with studies 
showing that improved driving behavior can reduce fuel consumption by 10% on average (4). 

Furthermore, the advent of Connected and Automated Vehicles (CAVs) presents a transformative 
opportunity to enhance the efficiency and safety of the transportation system (5). CAVs, through 
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications, enable the 
exchange of critical information that can be used to optimize vehicle trajectories, reduce traffic 
incidents, and improve fuel efficiency (6). Leveraging these capabilities, this study focuses on 
enhancing vehicle trajectory planning through the development of an eco-cooperative Adaptive 
Cruise Control system at signalized intersections (ECO-CACC-I). This system incorporates queue 
estimation using shockwave theory and connected vehicle data to optimize trajectories in the 
vicinity of traffic signals with uncertain timings. 

Central to this optimization is the use of Phasing and Timing (SPaT) messages, a key form of 
infrastructure-to-vehicle (I2V) communication. SPaT messages provide detailed information 
about traffic signal phases, including phase status and timing, which are crucial for applications 
that aim to improve both traffic safety and efficiency. These applications range from enhancing 
intersection safety through turn assist and red light warnings to improving traffic operations by 
reducing delays and optimizing fuel consumption through Green Light Optimal Speed Advisory 
(GLOSA) systems (7). By integrating real-time SPaT predictions and considering the effects of 
vehicle queues, this study evaluates the network-wide impacts of the ECO-CACC-I system, 
demonstrating its potential to significantly improve traffic flow and reduce environmental impacts 
in mixed traffic scenarios (8–12). 
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Literature Review 
Vehicle Trajectory Optimization 

The optimization of vehicle trajectories has been a well-explored topic in the literature. In 1977, 
Schwarzkopf and Leipnik (13) introduced a feedback algorithm that calculates the optimal vehicle 
speed to minimize fuel consumption on varying road grades, applying Pontryagin’s maximum 
principle to determine the optimal speed under a trip time constraint set by the driver. Recent 
studies have focused on the impact of optimizing speed trajectories near signalized intersections, 
often considering fixed-time traffic signals (14–18). Kamalanathsharma and Rakha (10) developed 
an Eco-Cooperative Adaptive Cruise Control (ECACC) system using infrastructure-to-vehicle 
(I2V) communication to optimize trajectories near fixed signals. This system was later refined by 
Yang et al. (19) and Chen et al. (20) to account for queue effects in single-lane approaches. Their 
studies demonstrated that incorporating queue effects via shockwave theory in trajectory planning 
could result in fuel savings of up to 16% without queue consideration and up to 18% when queues 
are considered. However, these studies only addressed fixed signal timings and occasionally 
recommended crawling speeds under certain conditions, depending on the switching time, initial 
speed, and activation distance. Field tests by Almannaa and Chen et al. (21,22) showed that 
ECACC systems could achieve average fuel savings of 31% and travel time reductions of 9%. 
Additionally, research by Chen and Rakha (23) indicated that battery electric vehicles (BEVs) 
could achieve energy savings of approximately 9.3% using similar optimization strategies. 

Fewer studies have examined the uncertainties in actuated traffic signal timings. Mintsis et al. (24) 
evaluated the effects of eco-driving on transportation network performance through a microscopic 
simulation model, which tested an enhanced velocity planning algorithm (EVPA). The study found 
that while EVPAs could significantly reduce emissions and improve comfort and safety, their 
effectiveness at the network level could decrease by up to 80% compared to individual vehicle-
level improvements depending on factors such as intersection characteristics, signal plans, 
activation distance, and traffic conditions. Chen et al. (20) developed an eco-driving approach for 
vehicular platoons that considered queues and uncertain signal timings, showing notable fuel 
economy improvements near actuated signals. Zhai et al. (25) introduced an eco-driving algorithm 
for CAVs at signalized intersections, factoring in queue effects and employing shockwave theory 
for queue length estimation to optimize fuel economy. However, this study was limited to low 
traffic volumes and did not consider the uncertainties of actuated signal timings. Shafik et al. 
(8,11,12,26) presented an ECO-CACC system that accounts for uncertain signal timings, with 
results showing potential fuel savings of up to 51%, with an average of 30% when considering 
various roadway grades and actual switching times. However, this study was limited to a single 
vehicle approaching a signalized intersection without accounting for surrounding traffic. 
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SPaT Prediction 

Researchers have explored various methods for predicting Signal Phase and Timing (SPaT) 
information, particularly the most likely switching times, using probabilistic, statistical, and 
machine learning-based approaches. 

Probabilistic Approaches: Bodenheimer et al. employed a Bayesian graph-based method that 
converts signal states into graphs and calculates the probabilities and most likely timings of phase 
transitions, focusing on a single intersection (27). Similarly, Ibrahim et al. used conditional 
expectation and confidence-based predictions for SPaT, also concentrating on a single intersection 
(28). 

Statistical Approaches: Van de Vyvere et al. utilized historical frequency distributions of SPaT 
data, using means and medians as predictors, and determined that data from the past 20 minutes 
was most relevant (29). Moghimi et al. developed a sparse multivariate time series model to predict 
cycle lengths across a corridor (30). 

Machine Learning Approaches: These methods are the most prevalent in SPaT prediction. 
Weisheit and Hoyer applied support vector machines (SVM) to determine switching times in 
traffic signals, selecting from three potential values (31). Genser et al. compared linear regression, 
random forests, and long short-term memory neural networks (LSTM), finding that LSTM 
provided superior performance (32). Eteifa et al. implemented an LSTM-based regression 
approach with a novel loss function to balance short-term and long-term predictions (33). Islam et 
al. introduced a convolutional long-short term memory neural network (CNN-LSTM) architecture, 
comparing it with multiple machine learning models, including multilayer perceptrons (MLP), 
extreme gradient boosting (XGB), gated recurrent units (GRU), and LSTM across two different 
corridors. The study found that CNN-LSTM performed best, though only slightly better than the 
vanilla LSTM (34). 

Queue Length Estimation 

Queue length estimation in the literature is commonly addressed using two primary methods: 
shockwave theory and the input-output method (35). Shockwave theory estimates the space 
occupied by the queue, while the input-output method calculates the number of vehicles in the 
queue. Several studies have aimed to enhance queue estimation using probe vehicle data. Comert 
(36) developed analytical models to improve cycle-based queue estimates at traffic signals using 
probe vehicles. Similarly, Tan et al. (37) utilized a maximum likelihood method with historical 
probe data for queue length estimation. Liu et al. (38) focused on identifying stop states from probe 
vehicle data to estimate queue length over time. Tavafoghi et al. (39) proposed an algorithm for 
cycle-based queue length estimation effective at low connected vehicle (CV) penetration rates 
(1.5%), relying on historical queue trends for accurate real-time predictions. Badillo et al. (40) 
combined loop detectors with probe vehicle data to enhance shockwave-based queue length 
estimation, using CV sensors to determine both the front and back of the queue. Zhang et al. (41) 
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applied Bayesian deduction and CV-enhanced traffic volume estimates at low penetration rates to 
accurately estimate queue length at signalized intersections. 

Problem Statement 
This research expands on the algorithm proposed by Shafik et al. (8), enhancing it to address the 
specific requirements of Green Light Optimal Speed Advisory (GLOSA) and eco-driving 
applications. The proposed algorithm incorporates real-time queue estimation using upstream loop 
detector data in combination with probe vehicle data, improving its robustness under varying 
traffic conditions. Given the critical importance of accurate Signal Phase and Timing (SPaT) 
predictions for eco-driving, the enhanced system is designed to perform reliably even with missing 
data, which can occur as the distance from the transmitter increases or as traffic density rises. The 
prediction accuracy is optimized for vehicles within 300 meters of the transmitter, the 
recommended range for DSRC communications and 4G LTE, corresponding to about 19.2 seconds 
before a signal change at 56 km/h (35 mi/h). Additionally, the system increases prediction accuracy 
as the time to the green phase decreases and includes a confidence measure for each prediction. 
This allows vehicles to make informed decisions on whether to accelerate or decelerate based on 
the uncertainty level. The developed ECO-CACC-I system is tested for its effectiveness in 
improving fuel economy, focusing on a single vehicle approaching an actuated signal with 
uncertain timings and queues. Comprehensive simulations are conducted for isolated traffic 
signals, considering market penetration levels (MPLs) from 0% to 100%. The following sections 
outline the Spat prediction, queue estimation process and the vehicle trajectory optimization 
algorithm. 

 

Research Significance and Contribution 
This research makes significant advancements in SPaT prediction, particularly for Green Light 
Optimal Speed Advisory (GLOSA) and eco-driving applications. The study contributes to the body 
of knowledge in the following ways: 

1. Novel Transformer-Based Architecture: This research introduces a new model architecture 
for SPaT predictions using transformer encoder blocks. To the best of the authors' 
knowledge, this is the first time such an architecture has been applied in this context, and 
the results demonstrate superior predictive power compared to previously used deep 
learning models. 

2. Innovative Ensemble Approach for Prediction Certainty: The study presents a novel data-
driven method for quantifying the certainty of model predictions by leveraging an 
ensemble approach. The consensus or variance among the models serves as a proxy for 
confidence in the predictions, offering a robust mechanism to mitigate the issue of model 
hallucinations, a common challenge in deep learning applications. 
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3. Comprehensive Data Utilization: The study is grounded in over a year's worth of data from 
Virginia, marking the first time such an extensive dataset has been used for SPaT prediction 
in this region. This long-term data collection captures a wide range of temporal variability 
and rare traffic events, enhancing the model's reliability. 

4. Development of ECO-CACC-I System: The research extends the ECO-CACC-I system to 
address uncertainties in traffic signal switching times and surrounding traffic. By 
integrating real-time queue length estimation, the system maximizes potential fuel savings 
in actual traffic conditions. 

5. CV-Enhanced Queue Estimation Algorithm: The study develops a real-time queue tail 
estimation algorithm that combines shockwave theory with connected vehicle (CV) 
trajectories. This method addresses the limitations of traditional shockwave analysis, such 
as instantaneous vehicle deceleration and acceleration, and operates without relying on 
historical queue data. 

6. Demonstration of Fuel Savings: The integration of the CV-enhanced queue tail estimation 
within the ECO-CACC-I algorithm shows significant fuel savings from a single vehicle’s 
perspective, surpassing the results achieved using standalone shockwave theory. 

7. Evaluation of Queue Considerations in Optimization: The research quantifies the benefits 
and limitations of incorporating queue considerations into the stochastic optimization 
logic, providing valuable insights into potential fuel savings compared to scenarios where 
queues are not accounted for. 

Overall, this research offers a comprehensive approach to improving SPaT prediction and vehicle 
trajectory optimization, with significant implications for eco-driving and GLOSA applications. 
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Methodology 

Data Description for SPaT Prediction 

Data were collected from six intersections along Gallows Road in Northern Virginia, as illustrated 
in Figure 1. This arterial road connects various land use areas, including residential, commercial, 
and office spaces. The studied intersections experience heavy traffic throughout the day. These six 
signalized intersections feature diverse phasing schemes, ranging from four to eight phases, as 
detailed in Table 1. Intersection 650075, a T-intersection, operates with four phases. Intersections 
650063 and 650065 have six-phase operations with split phasing on the side roads, where each 
road discharges traffic in all directions during its own phase. Intersection 650058 operates with 
seven phases, notably prohibiting the southbound left turn. The other two intersections, 650060 
and 650064, have eight-phase operations. The phasing plans, as depicted in the figure, do not 
strictly follow the NEMA phasing scheme and are represented as dictated by the data. Notably, 
the two sides of the barrier phases are reversed because phases 2 and 6 conclude each cycle. This 
setup primarily facilitates coordination with other traffic signals along the arterial and ensures that 
these phases are served for the entire cycle when no actuations are detected. 

 

Figure 1: The 6 intersections with Gallows Road in Northern Virginia from which data was 
collected 

The data used in this study were sourced from the Virginia SmarterRoads web portal. The data 
were broadcast via a web API every second, and a custom script was created to capture the data in 
JSON format, building a database of traffic signal timings. The data, generated by traffic signal 
controllers, provide detailed insights into the controller's state. However, due to communication 
losses between the controller and the web API, and then from the API to our servers, up to 30 
percent of data might be missing on certain days. These missing values are treated as such in the 
model without imputation, reflecting the data losses that occur in infrastructure-to-vehicle 
communication. Figure 2 outlines the unique data elements in the VDOT SmarterRoads dataset. 
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Table 1: Phasing schemes for all 6 intersections studied 
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Figure 2: Different variables in SmarterRoads data 

It's important to note that the complexity of SPaT prediction varies significantly across the 
intersections studied. This variability can be attributed to factors such as differences in traffic 
signal controller logic, driver behavior, intersection geometry, and phasing schemes. The 
intersections in question used D4 traffic signal controllers, and the data presented specific 
challenges for prediction. These challenges include: 

1. Data sequences with up to 30 percent missing information, impacting prediction accuracy 
but providing a realistic representation of infrastructure-to-vehicle communication. 

2. Controller logic that frequently skips left-turn and side-road phases, leading to highly 
stochastic predictions  where a single vehicle arriving on a secondary road can drastically 
alter the time to green on the primary road. 

3. A controller logic feature across all six intersections where, during some cycles, if no 
actuations occur on any approach, the entire cycle serves phases 2 and 6, which cover 
primary road through, right, and permissive left movements. This extends the time to green 
by an entire cycle, complicating long-term prediction efforts. 

SPaT Prediction Models Development 

Four machine learning models were fitted and compared for tasks 1 and 2, as introduced in the 
methodology section. These include three models previously utilized in literature: MLP, LSTM, 
and CNN-LSTM. Additionally, a new architecture based on Transformer Encoder Blocks is 
proposed, which will be referred to as the Transformer in this paper for brevity, even though it 
lacks the decoder component of a full transformer model. 
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Elements Common to All Models 

All four models were implemented using the PyTorch deep learning library (42) and were 
formulated as regression models with outputs comprising PP features, where PP represents the 
number of phases being predicted at the intersections. These output features correspond to the 
residual time to green (TTG) or time to red (TTR) for each of the PP traffic signal phases. The 
models utilized the Adam optimizer, consistent with previous deep learning models for SPaT 
prediction. Two general hyperparameters—batch size and learning rate—were tested across all 
models. The input for all models was standardized as an F×SF×S input sequence, where FF denotes 
the number of features and SS represents the length of the time window selected to generate the 
input sequence. Various time window values, including 3, 10, 30, 60, and 120 seconds, were tested, 
with the best results obtained using a 10-second time window from the past. The Mean Absolute 
Percentage Error (MAPE) was employed as the loss function for all models. 

𝑀𝐴𝑃𝐸 =
|𝑦𝑝𝑟𝑒𝑑−𝑦𝑡𝑟𝑢𝑒|

𝑦𝑡𝑟𝑢𝑒
 × 100  (1) 

MAPE was chosen as the loss function for all models because it heavily penalizes errors when 
predictions are close to zero, enhancing prediction accuracy for near-future events. This is 
particularly important for traffic signal timing predictions, where reliable short-term forecasts are 
crucial for applications like GLOSA. A prior study on intersection 650065 demonstrated that 
MAPE performs best for short-term predictions, aligning with the focus of GLOSA applications 
(33). 

 

To optimize model performance, hyperparameters were tuned using the Raytune distributed model 
selection library (43). The tuning process employed the Asynchronous Successive Halving 
(ASHA) algorithm, which aggressively stops less promising model configurations early, favoring 
those with better performance to maximize computational efficiency (44). Each model type was 
allocated 8 hours of computational time, using 2 Nvidia Tesla A100 GPUs to select the optimal 
hyperparameters. The model variants were trained for a maximum of 10 epochs, with up to 10 
model variants trained in parallel. This approach allowed hundreds of configurations to be tested 
for each model type, ensuring the selection of the best possible configurations. 

MLP 

MLPs represent the simplest neural network architecture used as a baseline in this study. The 
multilayer perceptron was designed to process the same 10-second data sequence as the other 
models. In this setup, each of the 10 time steps in the sequence was treated as an independent 
feature, with separate weights assigned to each step. This approach means the model receives data 
from the last 10 seconds without considering the temporal order or giving more weight to more 
recent information. Consequently, the model must determine the importance of each time step's 
data on its own, allowing it to focus on relevant data from earlier time steps if needed. 
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The MLP model has two primary hyperparameters: the number of nodes per layer (N) and the 
number of dense layers with sigmoid activation (n_dense). Although alternative activation 
functions like ReLU were tested, sigmoid activation proved to be the most effective for this 
application. 

 

 

Figure 3. MLP Neural network architecture 

 

LSTM 

LSTM neural networks have been effectively applied in this context and have demonstrated strong 
performance in similar applications (32,33,45). LSTM networks are particularly adept at capturing 
temporal dependencies between data elements across different time steps. This capability allows 
LSTM networks to recognize patterns and relationships between various factors such as signal 
states, traffic volumes, speeds, vehicle arrivals, and pedestrian movements. By considering both 
short-term dependencies and long-term trends, LSTM networks enhance prediction accuracy. 

For this study, we utilized the LSTM architecture proposed by Graves in 2013 (32). The LSTM 
cell is defined by the following five equations: 
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𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖)      (2) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓)      (3) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)     (4) 

𝑜𝑡 = σ(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡−1 + 𝑏𝑜)      (5) 

ℎ𝑡 = 𝑜𝑡 𝑡𝑎𝑛ℎ(𝑐𝑡)         (6) 

In this model, the variable 𝑥𝑡 represents the input at time t, while the input, output, and forget gates 
are denoted as i, o, and f, respectively. The internal LSTM cell, where information is stored, is 
referred to as c, and the hidden state is represented by h. Weights are denoted by W and biases by 
b, with the Tanh activation function applied within the LSTM layers. 

The model's hyperparameters include: 

• N: The number of features in the LSTM sequence, the output vector of the LSTM, and the 
number of neurons in the dense layer. 

• n_lstm: The number of LSTM layers. 
• n_dense: The number of dense layers using sigmoid activation that aggregate the LSTM 

output. 

 

Figure 4. LSTM Neural Network Architecture 

 



13 
 

CNN-LSTM 

The CNN-LSTM model, although similar in prediction performance to a simple LSTM, was 
previously suggested as a robust method for SPaT prediction (34). Two-dimensional convolutions, 
however, were found to be less effective for aggregating features in this context. Unlike in 
computer vision, where features are spatially interrelated, the features from traffic signal 
controllers do not exhibit spatial relationships. Consequently, the output of a two-dimensional 
CNN-LSTM model would be overly dependent on the specific order of the features. Therefore, a 
one-dimensional CNN-LSTM is more suitable for this problem, as it effectively captures trends 
across each feature and integrates them into the LSTM to address temporal dependencies. 

The CNN-LSTM model involves five key hyperparameters: 

• C: The filter size for the convolution. 
• n_conv: The number of convolution layers. 
• n_lstm: The number of LSTM layers. 
• n_dense: The number of dense layers. 
• N: The number of neurons in each layer, including both the LSTM cells and the dense 

layers. 
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Figure 5. CNNLSTM Neural Network Architecture 

 

Transformer 

A typical transformer architecture includes both an encoder and a decoder block. The encoder 
processes the input sequence with self-attention mechanisms to capture relationships between time 
steps, while the decoder performs a similar function for the output sequence to establish a mapping 
between the input and output. However, the architecture proposed here, as illustrated in Figure 6, 
uses only the encoder block of the transformer. It replaces the decoder block with dense layers that 
use sigmoid activations and a final linear layer for regression. In this setup, the encoder block 
focuses on self-attention within the input sequence, as the output is a single vector representing 
the residual time to green or time to red for each phase rather than a sequence. 

The encoder block utilized in this study follows the structure outlined by Vaswani et al. (46). Key 
hyperparameters for this model include: 
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• N: The size of the input embedding, the transformer output, and the dense layers before the 
final output layer. 

• n_heads: The number of attention heads in each multi-head attention mechanism within 
the encoder. 

• n_encoder: The number of stacked encoder layers. 
• n_dense: The number of dense layers with sigmoid activations that aggregate the 

transformer encoder output before the final linear layer. 

Figure 7 shows the transformer encoder block architecture, adapted from Vaswani et al. (46). 

 

 

Figure 6. Transformer encoder-based architecture 
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Figure 7. Encoder block architecture 

In this context, the variables Q, K, and V represent the query, key, and value, respectively. These 
are linear projections of the input embedding, which includes temporal encoding for each 
attention head. For each attention head, the dot product attention can be computed using the 
following formula (46): 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉      (7) 

In this mechanism, the matrix multiplication between Q (query) and K (key) quantifies the 
similarity between these matrices, with the result being scaled by a scaling factor equal to the 
square root of the dimension of the key matrix dk for normalization. This scaling ensures that the 
dot product does not grow too large and maintains numerical stability. The purpose of this dot 
product attention is to compute self-attention, which helps the model identify which time steps are 
more relevant for predicting the time to change and which are less relevant. 

The dot product of Q and K serves as a similarity measure, allowing the model to assess the 
importance of each time step in relation to the prediction task. This similarity is then passed 
through the softmax function, which enhances the differences between the self-attention weights, 
making it easier for the model to focus on the most relevant time steps. 

The result is then multiplied by the value matrix V to produce the final output of the dot product 
attention. This output highlights the features of the input sequence, giving more emphasis to the 
time steps that are deemed most important for the prediction. 
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Ensemble Approach 

The four models—MLP, LSTM, CNN-LSTM, and Transformer—differ greatly in their data 
handling and computational approaches. This diversity in model logic allows us to leverage 
ensemble-based prediction methods. To ensure effective ensemble performance, diversity among 
the constituent models is crucial (47). This diversity is achieved in two ways: 

1. Architectural Variation: By employing four distinct architectures, the data undergoes 
various processing methods and logic, contributing to the overall diversity of the 
ensemble. Each model architecture processes data differently, adding to the ensemble’s 
logical diversity. 

2. Hyperparameter Diversity: For each model, multiple variants with varying numbers of 
parameters are explored during hyperparameter tuning. This variability in model size and 
parameter count introduces additional complexity and diversity among the models within 
the ensemble. 

The ensemble approach for SPaT information is based on two key hypotheses: 

Hypothesis 1: Diverse predictions from multiple models can enhance prediction performance by 
reducing the impact of outlier predictions or “hallucinations.” Since each model is unlikely to 
produce the same incorrect prediction due to differing biases or variances, an ensemble can 
mitigate errors that are specific to individual models. 

Hypothesis 2: Consensus among ensemble models can serve as a strong confidence indicator for 
predictions. Predictions that are agreed upon by a majority of models are expected to be more 
accurate. This can be tested by analyzing error distributions relative to the level of consensus; as 
consensus increases, the mean error should decrease, and the proportion of distant outlier 
predictions should decline. 

Real-Time Back of the Queue Estimation 

Overview 

In this study, accurate estimation of queue length is critical for optimizing a vehicle's speed profile 
as it approaches a traffic signal. Two primary methods are commonly employed for queue length 
estimation: the input-output method and the shockwave method. The input-output method 
estimates the vertical queue size by counting the number of vehicles, while the shockwave method 
assesses the space occupied by the queuing process (35). 

For this research, the shockwave method is utilized, relying on upstream loop detector data to 
estimate the queuing process. Additionally, probe vehicle data is incorporated via V2V 
communication to refine the queue length estimates. 
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The fundamental diagram in Figure 8 illustrates the three states in the queuing process: 

• State A: Represents the approaching flow with initial density. 

• State B: Occurs when the signal turns red, and vehicles stop at the stop bar, creating a queue 
with jam density 𝐾𝑗. The queue continues to grow until the signal turns green. 

• State C: Represents the queue dissipation phase, where the queue dissipates at the road's 
saturation flow rate. 

 

 
Figure 8: Fundamental Diagram  

The shockwave theory calculates the growth speed of the queue, 𝑣𝐴𝐵, based on the arrival flow 𝑞0, 
arrival density  𝐾0, and jam density 𝐾𝑗. This speed indicates how rapidly the queue forms. 
Additionally, the queue dissipation speed, 𝑣𝐵𝐶, is determined using the capacity flow rate 𝑞𝑐, 
critical density 𝐾𝑐, and jam density 𝐾𝑗. Figure 9 illustrates the backward-forming shockwave and 
the backward queue dissipation wave at a signalized intersection. 
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Figure 9 Queuing Process at Signalized Intersections  

Queue Estimation Algorithm 

In a connected vehicle (CV) environment, controlled vehicles may modify their speed profiles, 
leading to discrepancies between measured and actual arrival flow rates at the upstream loop 
detectors. This discrepancy can result in significant errors in queue length estimation, affecting the 
effectiveness of vehicle control strategies. To address this issue, complementary probe vehicle data 
are utilized to improve queue length estimates. The system shares the following information with 
controlled vehicles to refine the estimates: 

1. Arrival Time Estimation: When a CV enters the network, the GLOSA system uses the 
current queue estimate from the shockwave method to predict the vehicle's arrival time at 
the end of the queue. This estimated arrival time is then used to adjust the arrival flow rate, 
which in turn refines the queue length estimate. 

2. Queue Length Update: When the CV stops at the end of the queue, the queue length 
estimate is updated based on the CV's current location. 

Algorithm 1 presents the pseudocode for the queue estimation algorithm, which integrates 
shockwave theory with complementary CV data. 
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Algorithm 1: Queue Estimation Algorithm 

1: calculate the arrival flow rate and density 𝑞0, 𝐾0 using loop detector at time 𝑡; 
2: if a CV enters the upstream link then 
3:    if the CV will alter its speed profile according to GLOSA then 
4:       calculate the estimated arrival time of this CV at the back of the queue according to GLOSA; 
5:       calculate the modified arrival flow rate and density 𝑞′0, 𝐾′0 at time 𝑡; 
6:    else  
7:       continue with the detector-provided arrival flow rate and density 𝑞0, 𝐾0 at time 𝑡; 
8:    end if 
9: else 
10:    continue with the detector-provided arrival flow rate and density 𝑞0, 𝐾0 at time 𝑡; 
11: end if 
12: calculate the shockwave speed 𝑣𝐴𝐵 at time 𝑡; 
13: calculate the queue length at time 𝑡; 

 

Optimizing Vehicle Trajectories Considering Queue Effects 

System Overview 

As the literature indicates, optimizing vehicle trajectories can significantly reduce fuel 
consumption and greenhouse gas emissions. However, the impact of trajectory optimization for 
vehicles approaching an actuated signal controller is often overlooked, especially when 
considering surrounding traffic. This paper addresses this gap by formulating the optimization 
problem within the context of queue impacts, expanding on the work by Shafik, Eteifa, and Rakha 
(8), which reported fuel savings of up to 51% with an average of 30%. 

Figure 10a displays the trajectory of an uninformed driver, while Figure 10b and Figure 10c show 
optimized trajectories for a vehicle approaching an intersection with a queue. Figure 10b depicts 
an optimized trajectory that does not account for the queue, resulting in the vehicle idling at the 
end of the queue. In contrast, Figure 10c illustrates an optimized trajectory where the control 
algorithm incorporates queue length and clearing time, enabling the vehicle to avoid stopping at 
the back of the queue and idling until the queue clears. 
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(a) (b) (c) 

Figure 10: Comparison between Trajectory Planning Alternatives a) Uncontrolled Vehicle, 
b) Controlled without Consideration of Queue, c) Controlled with Consideration of Queue  

The following sections will detail the stochastic optimization problem formulation followed by an 
overview of the underlying models used in this study, including the car-following model, vehicle 
dynamics model, and fuel consumption models. 

The A* Algorithm 

The A* algorithm, a widely used pathfinding method, estimates the least-cost 
acceleration/deceleration policy for vehicle trajectory planning by assuming that the chosen policy 
remains constant over time. For each permissible acceleration policy, the A* algorithm assumes 
that the same level of acceleration or deceleration will be maintained until the vehicle reaches its 
destination, whether that is the stop bar for the upstream section or the end of the downstream link. 

The heuristic cost is computed for both upstream and downstream sections by iterating through 
feasible acceleration policies and selecting the one that results in the minimum total fuel 
consumption. Policies that violate constraints are deemed infeasible. This process ensures that the 
trajectory optimization achieves the lowest possible fuel consumption from the starting point to 
the destination. For additional details on the application of the A* algorithm in this research, please 
refer to the literature. 

The Vehicle Control Algorithm 

In this application, the A* algorithm is applied to both the upstream and downstream sections. For 
the upstream section, it determines the optimal acceleration at each time step to minimize fuel 
consumption, while ensuring that constraints related to red lights and vehicle dynamics are 
respected. Downstream of the traffic signal, the algorithm calculates the optimal acceleration 
policy based on the vehicle's speed at the end of the upstream section and includes a speed jerk 
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constraint to maintain a comfortable acceleration. This iterative process is performed at each time 
step to derive the fuel-optimal acceleration profile. 

Algorithm 2 outlines the outer loop of the ECO-CACC-I system implementation. This system 
continuously monitors the traffic signal status to estimate the vehicle’s next state variable. It is 
constrained by the maximum deceleration limits from the car-following model to prevent 
collisions with other vehicles. Additionally, to address the uncertainty in signal switching times, a 
safety strategy is employed to prevent running red lights or making abrupt stops. Specifically, the 
critical stopping distance 𝑑𝑐𝑟 is calculated and compared with the current distance to the 
intersection 𝐷𝑖  at each time step. When 𝐷𝑖 is less than 𝑑𝑐𝑟, the system initiates deceleration at a 
maximum comfortable rate α\alphaα, set at 1.3 m/s²  (48). 

Algorithm 2: The GLOSA Algorithm 

1: Input: 𝑆0: controlled vehicle's initial state; 
2: 𝐷𝑖: distance to intersection; 
3: 𝑆𝑙: leader vehicle state; 
4: Output: the update controlled vehicle state; 
5: for each time step 𝑡𝑖 do 
6:      check remaining distance to intersection (𝐷𝑖); 
7:      compute the minimum stopping distance (𝑑𝑐𝑟); 
8:      if signal light is red then 
9:          if  𝐷𝑖 < 𝑑𝑐𝑟 then 
10:               while signal light is red then 
11:                         do decelerate with 𝛼; 
12:               end while; 
13:          else 
14:               if signal light is red then 
15:                   check the expected time to green 𝑡𝑠; 
16:                   generate next upstream state variable using A* algorithm (𝑆𝑖+1); 
17:                   check and validate the generated state 𝑆𝑖+1 with car-following model; 
18:               else  
19:                   generate next downstream state variable using A* algorithm (𝑆𝑖+1); 
20:                   check and validate the generated state 𝑆𝑖+1 with car-following model; 
21:                end if 
22:          end if 
23:      end if 

Stochastic Problem Formulation 

The optimization problem is framed as a stochastic optimal control problem to handle the 
uncertainty in traffic signal switching times at actuated signal controllers. The objective function, 
detailed in Equation (8) aims to minimize the total expected fuel consumption from the initial time 
point 𝑡0 to the final time point 𝑡𝑓, with 𝑎𝑡 denoting the instantaneous vehicle acceleration at time 
t. 

Equation (9) describes the relationship between speed, time, and total traveled distance, where 𝑋𝑡 
represents the distance traveled from the start until time t. Equation (10) specifies the total traveled 
distance from the beginning until the expected signal time 𝔼(𝑡𝑠). 
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Equation (11) introduces the upstream safety constraint, with 𝛼 indicating the maximum 
deceleration level (-0.6 m/s²). This constraint ensures the vehicle does not run a red light by 
preventing acceleration when the distance to the stop bar is less than or equal to 𝑑𝑐𝑟,𝑡, which is the 
minimum distance required to stop comfortably. 𝑋𝑀 represents the location of the stop bar. 

Equation 12 defines the downstream distance constraint, where "downstream" refers to the 
distance from the vehicle's position when the signal turns green (𝑋𝑠) at time 𝑡𝑠 to the destination 
location (𝑋𝑁). 

Equation (13) establishes the kinematic relationship between the vehicle's speed at time 𝑡 and 𝑡 +

∆𝑡. Equation (14) imposes a speed limit constraint. Finally, Equation (15) represents the 
acceleration jerk constraint. 

Min ∑ 𝔼(𝐹𝐶𝑡(𝑎𝑡)) ∙ ∆𝑡
𝑡𝑓

𝑡=𝑡0
         (8) 

Subject to: 
𝑋𝑡 =  ∑ 𝑥𝑡

𝑡
𝑡0

= ∑ 𝑣𝑡 ∙𝑡
𝑡0

∆𝑡        (9) 

𝑋𝑠 = ∑ 𝑣𝑡 ∙
𝔼(𝑡𝑠)
𝑡=𝑡0

∆𝑡 ≤ 𝑋𝑀       (10) 
𝑣𝑡+∆𝑡 = 𝑣𝑡 + 𝛼 ∙ ∆𝑡      ∀ 𝑡 ≤ 𝔼(𝑡𝑠), ∀ 𝑋𝑡 𝑤ℎ𝑒𝑟𝑒 𝑋𝑀 − 𝑋𝑡 ≤ 𝑑𝑐𝑟,𝑡  (11) 

∑ 𝑣𝑡 ∙
𝑡𝑓

𝑡=𝑡𝑠
∆𝑡 = 𝑋𝑁 − 𝑋𝑠           (12) 

             𝑣𝑡+∆𝑡 = 𝑣𝑡 + 𝑎𝑡 ∙ ∆𝑡   ∀𝑡 ∈ {𝑡0, … , 𝑡𝑓}    (13) 
               𝑣𝑡 ≤ 𝑣𝑙𝑖𝑚    ∀𝑡 ∈ {𝑡0, … , 𝑡𝑓}      (14) 

               𝑎𝑡+∆𝑡 ≤ 𝑎𝑡 + 1.3 ∙ ∆𝑡          ∀𝑡 ∈ [𝑡0, … , 𝑡𝑓],   ∀ 𝑓𝑏,𝑡 > 0   (15) 

 

Underlying Systems 

Vehicle Dynamics Model 

The vehicle dynamics model used for light-duty vehicles (49) is employed to simulate the vehicle's 
acceleration and deceleration behavior. Equation 16 calculates acceleration based on the tractive 
force 𝐹𝑡 and the resisting force 𝑅𝑡. Equation 17 describes tractive force calculation. It considers 
factors such as the throttle input 𝑓𝑏,𝑡 driveline efficiency 𝜂𝑑, a constant β for gear shift effects, the 
vehicle mass 𝑀𝑡𝑎 on the tractive axle, and the road friction coefficient μ. 

Equation 18 determines the instantaneous vehicle power 𝑃𝑡. Equation 19 outlines the resisting 
forces on the vehicle, which include rolling resistance, aerodynamic drag, and grade resistance. 
Factors such as air density at sea level and 25°C  ρ), the drag coefficient (𝐶𝑑), the altitude 
correction factor (𝐶ℎ), vehicle frontal area (𝐴𝑓), and rolling resistance constants (𝑐𝑟0, 𝑐𝑟1, 𝑐𝑟2) are 
included in this calculation. 

𝑎𝑡 =
𝐹𝑡−𝑅𝑡

𝑚
         (16) 
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𝐹𝑡 = min [3600𝑓𝑏,𝑡𝜂𝑑β
𝑃𝑡

𝑣𝑡
, 𝑀𝑡𝑎𝑔μ]      (17) 

𝑃𝑡 = (
𝑅𝑡+1.04 𝑚𝑎𝑡

3600𝜂𝑑
) 𝑣𝑡        (18) 

𝑅𝑡 =
𝜌

25.91
𝐶𝑑𝐶ℎ𝐴𝑓𝑣𝑡

2 + 𝑚𝑔
𝑐𝑟0

1000
(𝑐𝑟1𝑣𝑡 + 𝑐𝑟2) + 𝑚𝑔𝐺𝑡   (19) 

 

Car-Following Model 

The Fadhloun-Rakha (FR) car-following model (50) is utilized in this research to represent 
scenarios involving uninformed drivers. This model leverages the vehicle dynamics model for 
light-duty vehicles and incorporates a collision avoidance strategy to ensure safe following 
distances. The mathematical expression for the FR model is provided in Equation 20. It applies a 
reduction multiplier 𝐹 to the vehicle's acceleration, with 𝐹 depending on 𝑋𝑛, a factor derived from 
the vehicle’s steady-state speed, steady-state spacing, and its current speed and spacing (Equations 
21 and 22). Additionally, the model includes a collision avoidance term CA, which accounts for 
the desired deceleration rate and the kinematic deceleration required to align the following 
vehicle’s speed  it h that of the leading vehicle  Equations 23 and 24). 

 

𝑎𝑛 = 𝐹(𝑋𝑛) 𝑎𝑛
𝐷𝑌𝑁 + 𝐶𝐴(𝑣𝑛, 𝑠𝑛, ∆𝑢𝑛)     (20) 

𝐹(𝑋𝑛) = 𝑒−𝑎𝑋𝑛(1 − 𝑋𝑛
𝑏𝑒𝑏(1−𝑋𝑛))

𝑑
      (21) 

𝑋𝑛 =
𝑠𝑛

𝑉𝐴

𝑠𝑛
∗

𝑣𝑛

𝑣𝑛
𝑉𝐴        (22) 

𝐶𝐴(𝑣𝑛, 𝑠𝑛, ∆𝑢𝑛) =
𝑑2

(𝑑𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝑔𝐺)
      (23) 

𝑑 =
[𝑣𝑛

2−𝑣𝑛−1
2 +√(𝑣𝑛

2−𝑣𝑛−1
2 )

2
]

4(𝑠𝑛−𝑠𝑗)
       (24) 

 

Fuel Consumption Model 

The Virginia Tech Comprehensive Power-Based Fuel Consumption Model (VT-CPFM) type 1 is 
employed to estimate instantaneous fuel consumption (51). VT-CPFM-1 is recognized for its 
accuracy in fuel consumption estimates, aligning well with field measurements. It effectively 
mitigates the issue of bang-bang control behavior and offers ease of calibration with publicly 
available data. The fuel consumption formula, detailed in Equation (25), incorporates calibrated 
model constants 𝛼0, 𝛼1, and 𝛼2  specific to the vehicle in use. 

𝐹𝐶𝑡 = {
𝛼0 + 𝛼1𝑃𝑡 + 𝛼2𝑃𝑡

2   ∀𝑃𝑡 > 0
𝛼0                                 ∀𝑃𝑡 ≤ 0

      (25) 
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Results and Analysis 

SPaT Prediction 

Task 1: Identifying Change Times Less than 20 Seconds in the Future 

The task focuses on distinguishing between predictions made for time intervals less than 20 
seconds and those extending further into the future. For this purpose, each of the 12 models 
produces a regression prediction, which is subsequently converted into a binary classification: a 
value of 1 is assigned if the predicted time is under 20 seconds and 0 if it is over 20 seconds. 
Regression models are chosen due to their superior performance in classification tasks, owing to 
their more nuanced loss function, which better captures the subtleties of the prediction problem. 

Three ensemble techniques are tested to improve classification accuracy: taking the mean of the 
predictions, taking the median, and using a majority vote among the 12 models. Table 2 illustrates 
the classification accuracy achieved by each individual model at various intersections, as well as 
the performance of the different ensemble methods. 

Table 2: Classification accuracy of different models distinguishing whether a signal phase 
will change 20 seconds in the future 

Intersection Model 
Rank 

LSTM MLP CNNLSTM  Transformer mean median votes 

650058 
1 94.84% 94.97% 94.37% 95.31% 

95.24% 95.12% 95.08% 2 94.59% 94.71% 94.63% 95.25% 
3 94.68% 94.82% 94.64% 95.14% 

650060 
1 95.20% 95.23% 93.47% 95.04% 

95.53% 95.03% 95.17% 2 94.40% 95.11% 93.22% 95.09% 
3 94.20% 95.05% 93.58% 95.32% 

650063 
1 95.95% 95.90% 95.88% 96.07% 

96.17% 96.10% 96.08% 2 95.70% 96.01% 95.54% 95.96% 
3 95.87% 95.84% 95.91% 96.04% 

650064 
1 94.98% 95.84% 94.20% 96.59% 

96.51% 96.04% 96.17% 2 95.06% 95.81% 93.77% 96.24% 
3 95.67% 95.97% 94.36% 96.45% 

650065 
1 95.63% 96.36% 94.33% 96.39% 

96.43% 96.08% 96.07% 2 95.88% 95.75% 94.18% 96.35% 
3 95.76% 95.92% 94.39% 96.08% 

650075 
1 96.01% 96.63% 96.01% 96.07% 

96.73% 96.07% 95.86% 2 96.08% 96.19% 95.54% 96.18% 
3 95.77% 96.05% 95.59% 96.04% 
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Task 2: Predicting the exact time to change when less than or equal to 20 seconds 

After determining whether the time to change for each phase is within 20 seconds, the subsequent 
task is to predict the exact time to change for each phase. Table 3 and Table 4 present the Mean 
Absolute Percentage Error (MAPE) and the Mean Absolute Error (MAE) of each model for the 
subset of data where the time to change is less than 20 seconds in the future, across all six 
intersections. The prediction performance of the ensemble methods, specifically the mean and 
median of the models, is also included in both tables 

Table 3: Mean Absolute Percentage Error of Each Model for Values under 20 seconds 

Intersection Model 
Rank 

LSTM MLP CNNLSTM Transformer mean median 

650058 
1 20.45 16.65 19.40 15.39 

15.58 15.03 2 19.70 16.33 20.43 15.95 
3 21.15 16.68 20.90 15.29 

650060 
1 22.64 19.49 17.80 18.07 

16.72 15.89 2 20.90 19.12 17.84 19.01 
3 21.79 19.29 20.27 19.03 

650063 
1 22.47 19.65 20.62 16.29 

16.45 15.61 2 23.14 19.20 18.67 16.90 
3 22.47 19.19 21.23 17.56 

650064 
1 22.29 21.28 21.92 19.88 

18.31 17.60 2 23.08 21.18 22.43 18.75 
3 25.07 22.58 23.09 19.38 

650065 
1 22.74 19.97 19.65 17.56 

16.70 16.32 2 22.21 18.97 19.82 17.90 
3 22.54 19.19 20.33 17.34 

650075 
1 16.38 15.01 12.95 11.37 

11.94 10.99 2 17.64 13.68 14.96 13.25 
3 17.62 13.64 16.25 12.94 

 

Table 4: Mean Absolute Error of Each Model for Values under 20 seconds 

Intersection Model 
Rank 

LSTM MLP CNNLSTM Transformer mean median 

650058 
1 1.585 1.456 1.572 1.345 

1.330 1.309 2 1.509 1.450 1.707 1.428 
3 1.636 1.480 1.614 1.351 

650060 
1 1.839 1.720 1.516 1.684 

1.483 1.419 2 1.619 1.728 1.501 1.760 
3 1.677 1.773 1.621 1.718 

650063 
1 1.785 1.647 1.711 1.473 1.446 1.428 2 1.786 1.695 1.632 1.511 
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3 1.776 1.662 1.702 1.573 

650064 
1 1.843 1.909 1.864 1.801 

1.644 1.615 2 1.945 1.898 1.917 1.685 
3 2.051 2.052 1.954 1.782 

650065 
1 1.836 1.659 1.776 1.605 

1.502 1.496 2 1.757 1.688 1.811 1.595 
3 1.821 1.671 1.762 1.556 

650075 
1 1.177 1.194 1.033 0.962 

0.933 0.888 2 1.264 1.086 1.247 1.056 
3 1.213 1.074 1.168 1.005 

 

Tables 3 and 4 demonstrate that the proposed transformer-encoder-based architecture outperforms 
all other architectures across all intersections except for intersection 650060, where the CNN-
LSTM model slightly surpasses the transformer. In the other intersections, the CNN-LSTM is 
slightly outperformed by the MLP model, while the vanilla LSTM is the worst performer, though 
only by a small margin. All architectures show reasonably low MAPE values, ranging from 11% 
to 23%, indicating that the absolute error is between 11% and 23% of the predicted value. 
Consequently, the best models have an average deviation of about 0.96 seconds from the true 
value, while the worst models are off by approximately 2.05 seconds, as shown in Table 4. 

The ensemble approach reveals that both the mean and median values of all models enhance 
prediction accuracy. However, the median value is the most effective estimator, as it is robust 
against outliers, unlike the mean. The median consistently provides a non-trivial improvement 
over the best single model prediction across all 12 models. 

This finding supports Hypothesis 1 outlined at the end of the methodology section: by taking the 
median of predictions from 12 diverse models, errors or "hallucinations" from some models can 
be mitigated, resulting in a more accurate overall prediction that surpasses the performance of 
any individual model. 

Task 3: Assigning a level of certainty to the prediction 

In this third task, the focus is on determining the certainty level for each prediction, which is crucial 
yet often overlooked in existing literature. The idea is to leverage the variation in predictions made 
by the 12 best models to gauge certainty. Since each model has inherent errors due to bias and 
variance, it's rare for all models to converge on an incorrect prediction unless the error is data 
related. 

To quantify this certainty, a metric is established based on the consensus among the models. Given 
a set of predictions P from different models for the same input, the median prediction m is 
identified. A tolerance level t is set, usually around 20%, within which predictions are considered 
to be in agreement. The certainty level is then determined by counting the number of predictions 
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within this tolerance range. Instead of expressing certainty as a percentage of agreeing models, 
which could be misleading, the number of models in agreement is used to indicate the level of 
consensus and, consequently, the certainty of the prediction. 

𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑐𝑜𝑢𝑛𝑡 (𝑝)                  𝑝 ∈ 𝑃                  (1 − 𝑡) 𝑚 < 𝑝 < (1 + 𝑡) 𝑚 (26) 

To test this approach, a tolerance level of 5% is selected, and the number of models falling within 
this tolerance is evaluated. This produces 12 distinct confidence levels, ranging from 1 to 12, where 
1 represents the lowest confidence (only one model agrees with the median prediction within the 
set tolerance) and 12 represents the highest confidence (all 12 models agree within the tolerance). 
The Mean Absolute Percentage Error (MAPE) corresponding to each consensus level is illustrated 
in Figure 11. It's important to note that the error displayed for each consensus level includes the 
data from that level or higher. Therefore, the MAPE for a consensus level of 1 represents the 
overall error across the entire dataset, as all predictions have at least one model in agreement within 
the tolerance. 

 

 

 

Figure 11. MAPE as a function of the level of consensus with a 5% tolerance level for all 6 
intersections 

The figure highlights the effectiveness of the consensus metric in distinguishing between 
predictions with varying levels of confidence. For instance, Intersection 650058 shows an overall 
MAPE of 16.04%, but for predictions where all 12 models reach consensus, the MAPE 
significantly drops to 3.59%. Similarly, Intersection 650060 exhibits the most substantial variation 
in MAPE, where it decreases by 80% from 16.83% to just 3.2% when the highest consensus score 
is achieved. For Intersection 650063, the MAPE declines from an overall 16.89% to 5.33% at a 
consensus score of 12. This validates Hypothesis 2 outlined at the end of the methodology section, 
demonstrating that the consensus score serves as a reliable metric for quantifying the uncertainty 
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of each prediction before the actual value is known. This consensus-based ensemble method is 
versatile, applicable across various model types, including both statistical and machine learning 
models, and can be easily integrated with other methods for determining prediction certainty, such 
as probabilistic predictions. Figures 12 to 15 depict the probability distribution of model-based 
errors across each level of consensus, from 1 to 12. The error is calculated using the following 
equation: 

𝐸𝑟𝑟𝑜𝑟 = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒         (27) 

Where 𝑦𝑝𝑟𝑒𝑑 represents the median of the model-predicted values, and 𝑦𝑡𝑟𝑢𝑒 is the actual ground 
truth. A positive error indicates that the prediction overestimates the traffic signal time to change, 
while a negative error indicates an underestimation. The error distribution displayed in Figures 9 
to 12 shows errors ranging between -10 seconds and 10 seconds within the 20-second prediction 
window. Errors exceeding 10 seconds are considered distant outliers, and their corresponding 
percentages for each level of consensus are provided in Figure 16 for thoroughness. The errors are 
aggregated across all six intersections. Since predictions are rounded to the nearest second and the 
ground truth is measured in seconds, the values shown in the histograms in Figures 12 to 15 reflect 
the exact error value. For example, the central bar represents the percentage of instances where the 
error is zero, indicating that the rounded prediction is precisely equal to the ground truth. 

 

 

Figure 12. The error distributions for consensus values 1 to 3 
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Figure 13. The error distributions for consensus values 4 to 6 

 

Figure 14. The error distributions for consensus values 7 to 9 

 

Figure 15. The error distributions for consensus values 10 to 12 
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Figure 16. Percentage of outlier predictions with error greater than 10 seconds 

 

Fuel Consumption for ECO-CACC System 

To further quantify the impact of the consensus level on the overall performance of the GLOSA 
system, a simulation is conducted using the stochastic control algorithm developed by Shafik et 
al. (8) to observe its effect on a single vehicle passing through an intersection. The relationship 
between the consensus level and fuel consumption is depicted in Figure 17. 

 

 

Figure 17. The error distributions for consensus values 10 to 12 
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Queue Estimation Results 

The proposed method for estimating the queue tail was tested at an isolated signalized intersection 
across various CV market penetration levels, ranging from 0% to 100%. Table 5 presents the 
accuracy of the queue tail estimation, measured by the mean absolute error (MAE) in meters and 
the coefficient of determination (R2). The results demonstrate that the CV-enhanced estimation 
method significantly outperforms the shockwave theory-based approach, with estimation accuracy 
improving markedly at each market penetration level. These improved queue tail estimates enable 
the ECO-CACC-I system to more efficiently plan speed profiles in the presence of queues, as will 
be further detailed in the following sections. 
 

Table 5: Queue Estimation Accuracy Statistics per CV MP Level 

MP Level MAE (m) R2 

0% (Only SW Theory) 7.02 0.600 
10% 5.42 0.733 
20% 4.62 0.758 
30% 3.87 0.828 
40% 3.69 0.829 
50% 3.54 0.836 
60% 2.64 0.884 
70% 2.09 0.900 
80% 1.27 0.955 
90% 1.13 0.959 
100% 0.83 0.970 

 

Analysis of ECO-CACC-I system 

Experimental Design 

In this section, we assess the performance of the proposed trajectory planning algorithm through a 
series of scenarios. Initially, we investigate how the algorithm benefits a single vehicle by 
examining potential fuel savings under varying entry times into the intersection. Following this, 
we simulate a single-lane signalized intersection with a traffic flow rate of 300 vehicles per hour 
and a volume-to-capacity ratio of 0.3. The upstream and downstream links measure 250 meters 
and 180 meters, respectively, with the speed limit set at 56 km/h (35 mph), a lane saturation flow 
rate of 1800 vehicles per hour, and a jam density of 160 vehicles per kilometer. Signal timings 
include red for 50 seconds, amber for 5 seconds, and green for 65 seconds. Loop detectors placed 
at the beginning of the upstream link measure the traffic inflow, and a flat grade is assumed. The 
algorithm is designed to replicate the uncertain switching times of actuated signals, with the signal 
controller providing real-time, noisy predictions of switching times within the DSRC range. These 
predictions are generated using an LSTM neural network based on data from Gallows Road and 
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Prosperity Avenue/Park Tower Drive in Northern Virginia, simulating the real-world SPaT 
messages vehicles would receive. 

 

Figure 18: Problem Setup 

Performance of a Single Vehicle 

We evaluated the performance of the ECO-CACC-I system by testing it with and without 
considering queue effects from a single-vehicle perspective. The results, detailed in Table 6 reveal 
that average fuel savings improved from 28.7% to 35.7% when queue considerations were 
included in the optimization algorithm. Additionally, the maximum fuel savings increased from 
41.8% to 46.2% with queue consideration. 

The table also compares the effectiveness of queue tail estimation using shockwave theory alone 
versus using Connected Vehicle (CV) data. Shockwave theory alone achieved an average savings 
of 29.3%, while CV-enhanced queue estimation yielded 35.7% savings. Similarly, maximum 
savings with shockwave theory were 33.4%, compared to 46.2% with CV-enhanced estimation, 
highlighting the significant impact of accurate queue tail estimates on trajectory planning. 

Figure 19 illustrates the delay, number of stops, and fuel consumption for an example trajectory 
across different scenarios. It shows that incorporating queue considerations in the optimization led 
to fewer stops and reduced fuel consumption compared to the base case, though it did result in 
increased vehicle delay. The figure also highlights the improved queue tail estimation achieved 
with CV data compared to shockwave theory alone. 

Table 6: Fuel Saving Statistics For A Single Controlled Vehicle 

 Average Fuel Savings Maximum Fuel Savings 
Without Queue Consideration 28.7% 41.8% 
With Queue Consideration 
(SW Theory) 

29.3% 33.4% 

With Queue Consideration 
(CV Enhanced Method) 

35.7% 46.2% 
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(a) 

 

(b) 

 

(c) 

Figure 19: Single vehicle results: (a) vehicle delay; (b) number of stops; (c) fuel 

consumption 
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Performance at an Isolated Intersection 

Realistic simulations of traffic approaching an isolated intersection were conducted to evaluate the 
algorithm's performance across different Market Penetration Levels (MPLs) ranging from 0% to 
100%. Figure 20 depicts the base case with uninformed drivers using the FR car-following model, 
where vehicles lack SPaT information and no trajectory optimization is applied. Figure 21 
illustrates the trajectories for MPL = 50%, with (a) showing the results without queue consideration 
and (b) showing the results with queue consideration. Similarly, Figure 22 presents the simulated 
trajectories for MPL = 100%, comparing scenarios with and without queue consideration. These 
figures highlight that incorporating queue information in the control algorithm reduces idling time 
at the back of the queue, as evidenced by comparing the trajectories of vehicles 16, 17, 18, 19, 33, 
39, and 40 in Figures 21 and 22. 

Table 7 details fuel consumption levels for different MPLs, including the baseline (MPL = 0%), 
and MPLs of 10%, 50%, and 100%. The results indicate that fuel savings were achieved both with 
and without queue consideration. Specifically, at MPL = 100%, 13% of vehicles experienced an 
average fuel saving of 9%, with a maximum saving of 19% when queue consideration was 
included. 

As detailed in Table 7, the control algorithm results in increased delays compared to the baseline 
across all MPL levels. This delay manifests in two regions: upstream and downstream of the stop 
bar. When the algorithm accounts for queues, vehicles arrive at the queue clearing time with non-
zero speeds, leading to larger spacings according to the car-following model as opposed to the 
stationary vehicles at jam spacing. This larger spacing results in additional delay. Additionally, the 
optimization logic produces less aggressive acceleration, which lowers the speed profiles 
compared to the baseline, contributing to the increased vehicle delay. This behavior accounts for 
the majority of the observed delay. 

Table 7: Performance Statistics for the Isolated Intersection Simulation 

MOP Case Market Penetration Levels 
0% 10% 50% 100% 

Fuel Consumption Savings (\%) No Queue - 0.5% 2.0% 11.2%  
With Queue 0.5% 2.3% 12.1% 

Average Delay (s) No Queue 18.3 19.3 22.8 23.9  
With Queue 19.2 22.9 24.3 

Average Number of Stops No Queue 0.563 0.567 0.607 0.601  
With Queue 0.565 0.602 0.599 
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Figure 20: Sample space-time diagram at the isolated intersection simulation with 0\% CV 
MPL (Base Case) 

 

 

(a) 

 

(b) 

Figure 21: Sample space-time diagram at the isolated intersection simulation with 50\% 
MPL: (a) without queue consideration; (b) with queue consideration. 

 

(a) 
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(b) 

Figure 22: Sample space-time diagram at the isolated intersection simulation with 100\% 
MPL: (a) without queue consideration; (b) with queue consideration. 

 

Performance under Varying Traffic Demand Levels 

Various traffic demand levels were simulated to assess the algorithm's performance under different 
conditions, specifically low, medium, and high demands corresponding to volume-to-capacity 
(v/c) ratios of 0.3, 0.6, and 0.8, respectively. The algorithm's benefits were evaluated by comparing 
scenarios involving uninformed vehicles and controlled vehicles with queue consideration at a 
100% Market Penetration (MP) level. 

The simulation results demonstrate a decreasing trend in fuel savings as traffic demand increases. 
Figure 23 shows the fuel savings achieved at low, medium, and high demand levels. It is evident 
that higher traffic demand diminishes the potential fuel savings from upstream vehicle speed 
control. This reduction is due to increased vehicle interactions, which reduce the effectiveness of 
the algorithm and adversely affect overall traffic flow. 

At low demand levels, the algorithm can optimize vehicle speeds effectively, resulting in 
significant fuel savings. However, as demand rises to medium and high levels, increased traffic 
density limits the potential for improved trajectories. These conditions hinder the algorithm's 
ability to maintain optimal speeds and reduce fuel consumption. 

Additionally, higher demand introduces greater variability in vehicle interactions, complicating 
the achievement of coordinated movements that the algorithm depends on. In high-demand 
scenarios, controlled vehicles experience delays and disruptions due to uncoordinated actions from 
other vehicles, further decreasing the algorithm's effectiveness. These findings underscore the need 
to enhance the benefits of the algorithm through improved coordination and communication 
among controlled vehicles. 
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Figure 23: Fuel savings for each Traffic Demand 

Discussion 
The proposed algorithm exhibits remarkable performance in terms of fuel savings, achieving 
average reductions of 28.7% and 35.7% for cases without and with queue consideration, 
respectively, from a single-vehicle perspective. Incorporating queue dynamics into the 
optimization process enhances average fuel savings by 7% compared to scenarios without queue 
consideration. 

Figure 24 shows the fuel savings results from network simulations, comparing cases with and 
without queue consideration for optimal trajectory planning. The figure indicates a modest 
improvement of about 1% between the two approaches. However, at a 100% Market Penetration 
Level (MPL), 13% of vehicles experienced average and maximum fuel savings of 9% and 19%, 
respectively, when queue dynamics were considered. This benefit arises from the ability to 
optimize fuel savings within a specific spatiotemporal window relative to the signal's switching 
time, though the potential is minimal outside this window. In our simulations, 13% of vehicles 
approached the intersection during this optimal window, realizing significant savings by factoring 
in queue dynamics. 
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Figure 24: Fuel savings for each MPL 

Additionally, incorporating queue considerations for a leading vehicle in a platoon can sometimes 
limit the solution space for following vehicles. The optimal deceleration strategy for the leading 
vehicle may result in less efficient trajectories for those behind it. As illustrated in Figure 25, this 
can force some following vehicles to decelerate, leading to less optimal overall system-wide 
benefits. Our simulations show an overall marginal benefit of approximately 1%, with single 
vehicles achieving up to 19% savings on average. Using only shockwave theory provided an 8% 
marginal benefit. 

These findings align with previous literature (19) which reported a 2% improvement in fuel 
economy for a single-lane approach to a fixed-plan traffic signal when queue considerations were 
included in the control algorithm. This underscores the potential benefits and limitations of queue 
estimation on overall fuel savings. Future research could explore cooperative optimization of 
vehicle trajectories to enhance network-wide performance and address these limitations. 

 

(a) 
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(b) 

Figure 25: Impact of vehicle control on surrounding traffic at low MPLs: (a) No Control, 
(b) Control with low MPL. 
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Conclusion and Recommendations 
The study presents a comprehensive evaluation of an ECO-CACC-I system designed to address 
uncertainties in traffic signal switch times at actuated intersections in mixed traffic conditions. The 
system integrates real-time queue length estimations, which are enhanced through shockwave 
analysis and probe vehicle data. The accuracy of queue estimation was notably high, with 
R2R^2R2 values of 0.733 and 0.836 for Market Penetration Levels (MPLs) of 10% and 50%, 
respectively. When the queue dynamics were incorporated into the trajectory optimization process, 
the average fuel savings improved significantly, reaching 28.7% without queue consideration and 
35.7% with queue consideration. The maximum savings for a single vehicle simulation achieved 
up to 46.2%. Furthermore, the proposed CV-enhanced queue estimation method proved to be 
12.8% more effective in improving fuel economy compared to the shockwave theory alone. 

The system was tested across various scenarios, including different MPLs and traffic demands. 
Network simulations revealed that the inclusion of queue considerations in the optimization 
process resulted in average fuel savings of up to 11.2% and 12.1% for scenarios without and with 
queue consideration, respectively. However, the marginal improvement in fuel savings was 
minimal when considering the queue, and the benefits decreased with increasing traffic demand. 
These findings illustrate the effectiveness and limitations of the ECO-CACC-I system from a 
network-wide perspective. The results emphasize the need for future research to explore 
cooperative optimization strategies that balance delay and fuel consumption, particularly in the 
context of consecutive actuated traffic signals. 

In addition, the study evaluated a transformer encoder-based architecture for enhancing Signal 
Phasing and Timing (SPaT) data. This architecture was compared with other models, including 
MLP, LSTM, and CNN-LSTM, and was found to outperform them in two critical GLOSA tasks: 
predicting phase changes within the next 20 seconds and determining the exact change time within 
that period. The ensemble framework, which integrated three variants of each model type, further 
enhanced prediction performance by reducing model hallucinations and providing a more accurate 
measure of prediction certainty. The consensus of models indicated a significant reduction in Mean 
Absolute Percentage Error (MAPE), with the highest-confidence predictions achieving up to an 
80% improvement over the lowest-confidence predictions. Future research directions should focus 
on field-testing these ensemble predictions, addressing challenges such as communication 
latencies and vehicle dynamics, and exploring error-aware eco-driving strategies that incorporate 
prediction certainty to optimize fuel savings and overall network performance. 
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