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Morgan State University CAV Testbed 
To create a smart campus and improve the safety of all road users around Morgan State University, 
a Connected and Autonomous Vehicle (CAV) testbed was implemented in April 2022. This 
testbed is equipped with two Roadside Units (RSUs), two Onboard Units (OBUs), two Light 
Detection and Ranging (LiDAR) sensors, and four Closed-circuit television (CCTV) cameras, all 
operating under Cellular-Vehicle-To-Everything (C-V2X) technology. The installation and 
connection of components such as LiDAR sensors, RSUs, OBUs, and CCTV cameras are essential 
for establishing a seamless and effective CAV testbed. LiDAR sensors provide precise 
environmental mapping, detecting obstacles and capturing detailed traffic data [1]. RSUs and 
OBUs facilitate V2X communication, allowing vehicles to receive and respond to traffic safety 
messages, thus enhancing situational awareness [2]. CCTV cameras contribute by monitoring 
traffic flow and capturing events for further analysis [3]. The connection between these 
components is established through robust communication protocols, often by wireless 
technologies like Dedicated Short-Range Communication (DSRC) or cellular networks [2]. This 
integrated network enables the exchange of critical information, allowing for dynamic traffic 
management, improved safety for Vulnerable Road Users (VRUs), and the potential for predictive 
analytics. Proper installation and connection ensure that these technologies work in harmony, 
providing a reliable platform for testing and advancing connectivity systems [4]. Figure 1 
demonstrates Morgan State University’s testbed. 

 
Figure 1 Morgan State University's CAV testbed 

 

Figure 2 demonstrates the LiDAR sensor, RSU, and OBU on the CAV testbed. 
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Figure 2 LiDAR Sensor, RSU, and OBU Setup on the Morgan State University CAV Testbed 

Figure 3 shows the CCTV cameras installed at both intersections on the CAV testbed. 

 

Figure 3 CCTV Cameras Installed at Both Intersections on the CAV Testbed 

The primary objectives of the testbed include improving the safety for all road users, and 
particularly VRUs, at two signalized intersections within the testbed. These intersections are at 
Cold Spring Lane – Hillen Road and East 33rd – Hillen Road. The latest generation of smart signal 
controllers was installed at those two intersections to broadcast Signal Phasing and Timing (SPaT) 
messages, intersection map data (MAP), and Traveler Information Messages (TIM) [5]. The 
testbed also provides a controlled environment for evaluating and refining CV systems and their 
impact on traffic management and safety. The integration of LiDAR sensors and CCTV cameras 
into the testbed allows for comprehensive data collection on vehicle and VRU movements [6]. The 
use of RSUs and OBUs facilitates communication between vehicles and infrastructure and 
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provides real-time updates and coordination of traffic signals. This setup supports various research 
activities, including the assessment of traffic signal control strategies, the development of safety 
measures, and the evaluation of data collection methods.  

This testbed will function as a controlled, intelligent environment where various elements of CAV 
technology can be rigorously tested, enhanced, and verified prior to their use on public roadways. 
By creating this advanced testbed, the study seeks to advance the development, assessment, and 
enhancement of CAV functions. This initiative promotes safer interactions between CAVs, 
conventional vehicles, and VRUs. To create a smart campus, the testbed will gather comprehensive 
data on vehicle behavior, sensor performance, and interactions, which can be utilized for analysis, 
benchmarking, and the ongoing refinement of CAV systems. The main deliverables of the CAV 
testbed include:  

• Outfit test vehicles, both connected and conventional, with advanced sensors including 
LiDAR, CCTVs, RSUs, OBUs, and GPS.  

• Establish robust data collection and storage infrastructure to capture sensor outputs, vehicle 
trajectories, and interactions with other vehicles, bicyclists and pedestrians. 

• Execute extensive test runs with both CAVs and non-CAVs to gather detailed data on 
vehicle behavior, decision-making processes, and sensor inputs.  

• Evaluate how CAVs react in situations involving human-driven vehicles, unexpected 
obstacles, and intricate traffic scenarios. 

• Develop experiments to assess the interactions between pedestrians, human drivers, and 
CAVs.  

• Facilitate communication between LiDARs, RSUs, and OBUs, and issue driver warnings 
based on these interactions to enhance safety and response times. 

To effectively enhance road safety on the Morgan State University campus, a series of key tasks 
will be undertaken to integrate advanced technologies and analyze critical safety data. These tasks 
include: 

Installing advanced LiDAR sensors and RSUs at strategically selected locations on the Morgan 
State campus. 

• Establishing connections between LiDARs and RSUs, as well as between RSUs and OBUs, 
and ensuring seamless communication between OBUs. 

• Issuing driver warnings based on real-time data from RSUs and OBUs, as well as 
communications between multiple OBUs. 

• Analyzing pedestrian violations, including jaywalking, to determine the factors 
contributing to these unsafe behaviors. 

• Identifying and analyzing traffic conflicts to pinpoint high-risk time periods. 
• Providing evidence-based recommendations to improve safety for all road users. 
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This report aims to cover the above tasks and highlight recent research projects that have been 
conducted and published as technical reports or journal papers regarding “LiDAR validation with 
CCTV, CAVs testbeds in the country, real-time communication between RSUs and OBUs for 
broadcasting static warning messages, the advantages of LiDAR sensors in recognizing jaywalking 
events at signalized intersections, and the role of CAV testbeds in detecting V2P conflicts at 
signalized intersections.” 

LiDAR Validation With CCTV 
To ensure the accuracy of the LiDAR sensors installed on the testbed under various weather 
conditions, LiDAR data was compared with CCTV camera footage [7]. Understanding how 
accurately LiDAR can detect objects in different weather conditions is essential because it directly 
impacts the reliability of real-time traffic safety measures, particularly in challenging 
environments like rain or fog [8]. LiDAR sensors and CCTV cameras are often compared in the 
field of traffic management, as each system has different capabilities and operates in different 
ways. This comparison is important since it helps identify the strengths and limitations of each 
technology, guiding decisions on their integration for optimal performance in detecting 
pedestrians, vehicles, and other objects at intersections. This knowledge is essential for improving 
safety measures and ensuring that the technology can reliably function in all weather conditions. 

 The adoption of advanced sensor technologies such as LiDAR, radar, and high-definition CCTVs, 
enables CAVs to detect and respond to obstacles, traffic signals, and road conditions with high 
precision. Additionally, the integration of CAV technologies can lead to more efficient use of road 
space, reduced emissions through optimized traffic flow, and enhanced accessibility for 
individuals with mobility impairments. In essence, CAV testbeds serve as a vital proving ground 
for the innovations that will shape the future of safe, efficient, and inclusive transportation systems.   

This section of the report investigates the effectiveness of LiDAR and CCTV technologies in 
collecting vehicle and pedestrian counts at a signalized intersection under various weather 
conditions [7]. Data was collected over a two-hour interval during peak morning and evening 
traffic using both technologies. Vehicle counts were analyzed through trajectory tracking, 
identification of entry and exit points, and anomaly filtering. Pedestrian counts were meticulously 
assessed by examining LiDAR point cloud data and CCTV footage, focusing on movement 
patterns in key areas. The analysis revealed that vehicle and pedestrian counts varied depending 
on weather conditions, with the most significant differences observed during rainy weather and 
the least during snowy conditions.  

The installation process was meticulously planned to position the sensors optimally, ensuring 
comprehensive coverage of the intersection. Calibration was a critical step, involving adjustments 
to parameters like laser pulse frequency and scanning angles to enhance measurement accuracy. 
By emitting laser pulses and analyzing the reflected signals, the LiDAR sensors created detailed 
3D point clouds, which served as the basis for object detection and classification [9]. Machine 
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learning algorithms, such as Support Vector Machines (SVM) and Convolutional Neural Networks 
(CNN), were integral to this process, as they were trained on extensive datasets to accurately 
distinguish between different types of objects, including vehicles and pedestrians. The use of SVM 
and CNN algorithms provided significant advantages in adapting to various environmental 
conditions. SVMs, with their ability to handle noisy data and perform nonlinear classification, 
were particularly effective in ensuring accurate object classification within the LiDAR data [10]. 
Meanwhile, CNNs, inspired by the human visual system, utilized layers of filters to automatically 
learn important features from raw data, thereby improving the detection and classification of 
objects based on their distinct characteristics [11]. This combination of advanced algorithms 
allowed the LiDAR sensors to continuously refine their accuracy, even in the dynamic and 
unpredictable conditions of a real-world intersection. 

Complementing the LiDAR data, CCTV cameras were installed to capture video footage for 
additional traffic monitoring. These cameras were carefully selected for their high imaging 
capabilities and strategically positioned to cover key areas of the intersection while minimizing 
blind spots and distortions. Image processing algorithms, such as clustering and segmentation, 
were employed to analyze the recorded footage, extracting crucial traffic parameters like vehicle 
and pedestrian counts and trajectories. Both the LiDAR and CCTV systems underwent thorough 
calibration to ensure their accuracy and reliability across different weather conditions, such as 
sunny, rainy, and snowy days.  

To compare the accuracy of vehicle and pedestrian count data obtained from LiDAR and CCTV 
technologies, a Bland-Altman analysis [12] was conducted. This method assesses the agreement 
between the two datasets by plotting the difference between vehicle/pedestrian counts obtained 
from LiDAR (Li) and CCTV (Ci) against their mean count (Mi) for each movement and time 
period. Furthermore, the Bland-Altman plot is created by calculating the difference (Di = Ci – Li) 
between vehicle and pedestrian counts obtained from LiDAR and CCTV. Then, the Bland-Altman 
plot is drawn by plotting the differences (Di) on the y-axis against the mean counts (Mi) on the x-
axis. This chart provides a visual comparison of the two datasets, revealing any biases or patterns. 
Moreover, the mean difference (D*) is computed to offer assessments of bias and variability 
between the LiDAR and CCTV datasets. Figures 4, 5, and 6 depict the mean difference (D*) of 
vehicle counts for all time intervals and movements in snowy, sunny, and rainy weather conditions 
(right figure), as well as discrepancies in pedestrian counts between LiDAR and CCTV cameras 
during snowy, sunny, and rainy weather (left figure), respectively.  
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Figure 4 The Mean Differences (D*) of Vehicle Counts (left figure) and Pedestrian Counts (right figure) 

in Snowy Weather Conditions 

 

 

Figure 5 The Mean Differences (D*) of Vehicle Counts (left figure) and Pedestrian Counts (right figure) 

in Sunny Weather Conditions 

 

Figure 6 The Mean Differences (D*) of Vehicle Counts (left figure) and Pedestrian Counts (right figure) 

in Rainy Weather Conditions 
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The results highlighted that during snowfall, LiDAR sensors demonstrated greater reliability, 
showing minimal discrepancies in vehicle counts, while CCTV cameras were less reliable due to 
visibility issues caused by the snow. As the intensity of snowfall increased, the discrepancies 
between the vehicle counts recorded by the two technologies widened, highlighting the limitations 
of CCTV in adverse weather. In sunny conditions, both LiDAR and CCTV cameras performed 
relatively well, with only minor differences in vehicle counts. However, some larger discrepancies 
were observed due to factors such as objects obstructing the camera's view or lighting variations 
affecting image quality. LiDAR sensors consistently provided more accurate data, as their laser-
based detection system is less affected by external factors like lighting or shadows, making them 
more dependable for traffic monitoring in clear weather. Under rainy conditions, significant 
differences emerged between the two technologies. CCTV cameras struggled with reduced 
visibility and obstructions caused by water droplets on lenses, leading to inaccuracies in vehicle 
counts. LiDAR sensors, on the other hand, maintained their performance, providing reliable data 
despite the rain. The study concluded that LiDAR sensors offer superior accuracy and consistency 
across different environmental conditions compared to CCTV cameras, making them more 
suitable for reliable traffic monitoring and safety improvements, particularly in adverse weather 
scenarios. 

CAVs Testbeds in the country 
The establishment of CAV testbeds is essential for advancing traffic safety and efficiency in real-
world environments [6,13]. These testbeds serve as controlled settings where CAV technologies 
can be rigorously tested and refined before widespread deployment. By integrating vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) communications [14], CAV testbeds allow 
researchers to evaluate how these technologies interact with existing transportation systems. This 
controlled experimentation is vital for understanding how CAVs can reduce traffic congestion, 
improve traffic flow, and enhance overall roadway safety. The insights gained from CAV testbeds 
can guide the development of standards and protocols, ensuring that CAV technologies are reliable 
and effective when implemented on a larger scale. 

CAV testbeds are also pivotal in addressing traffic safety goals, particularly for vulnerable road 
users (VRUs) such as pedestrians, bicyclists, children, the elderly, and individuals with disabilities. 
By employing Vehicle-to-Everything (V2X) communication, which includes V2V, V2I, vehicle-
to-pedestrian (V2P), and vehicle-to-network (V2N) interactions, these testbeds create a 
comprehensive network that enhances situational awareness for both vehicles and road users. For 
instance, CAVs can receive real-time information about pedestrians crossing the road, enabling 
automated systems to take proactive measures to avoid collisions [15]. This level of integration 
not only protects VRUs but also contributes to a safer and more inclusive transportation 
environment. Furthermore, CAV testbeds contribute significantly to improving crash safety and 
reducing crash rates. Additionally, testbeds help in fine-tuning CAV responses to potential 
hazards. This proactive approach to safety allows for the identification and mitigation of risks 
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before they lead to crashes. Additionally, the data collected from these testbeds can inform the 
design of safer infrastructure, optimized traffic signal timings, and adaptive traffic management 
strategies, all of which are integral to creating safer roadways for both CAVs and human-driven 
vehicles.  

This section examines the diverse applications, technologies, geographic contexts, administrative 
structures, and challenges associated with CAV testbeds, providing a comprehensive foundation 
for planning future CAV and connected vehicle (CV) initiatives in the U.S. By analyzing these 
topics, this section highlights how CAV technologies can fundamentally transform transportation 
systems, enhance safety, and improve the overall mobility experience for all road users, including 
vehicles and VRUs. Figure 7 illustrates the planned and operational CAV testbed projects in the 
U.S. [16]. As shown in Figure 7, 70 operational sites and 101 planned sites have been implemented 
by the U.S. Department of Transportation (USDOT). 

 

Figure 7 Operational Connected Vehicle Deployments in the U.S. [16] 

As shown in Figure 7, CAV testbeds have been deployed in diverse geographical contexts, owing 
to the unique opportunities and challenges presented by urban, suburban, and rural environments. 
Urban areas, for instance, may focus on reducing congestion and improving pedestrian safety, 
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while rural areas might prioritize connectivity and emergency response efficiency. This geographic 
differentiation allows for a tailored approach to deploying CAV technologies. To provide a 
summary of CAV testbeds in the nation, Tables 1 and 2 [17] present the project titles, locations, 
equipment used in each testbed, communication technologies implemented, and a brief description 
for connected testbeds and autonomous testbeds, respectively. 

 

 

 

 

 

Table 1 CV Testbeds in the Country 

State Project Title Location Equipment Communication Brief Description 

AZ 
Arizona Connected 

Vehicle  
Test Bed (Anthem) 

along 5.5-mile area 
of West Daisy 

Mountain Drive, 
Anthem 

RSUs on 11 
intersections DSRC 

Providing pilot test opportunities 
 for applications such as transit signal priority and emergency vehicle 

preemption. 

CA 
California CV Test 

Bed,  
Palo Alto 

along Highway 82 
also known as El 

Camino Real 
(approximately 2.1 

miles) on 16 
intersections, Palo 

Alto 

replacing the DSRC 
RSUs 

 with C-V2X RSUs on 
16 intersections 

C-V2X 

to demonstrate Multi-Modal Intelligent 
Traffic Signal System (MMITSS), including CV-based traffic signal 
control and signal priority for transit, freight, and pedestrians, and 

Environmentally Friendly Driving 

FL Gainesville SPAT  
Deployment 

along 4 corridors, 
Gainesville 

27 RSU on 27 signals, 
71 OBUs on 

 a variety of vehicles 
including emergency 

vehicles, transit buses, 
UF fleet, City of 

Gainesville vehicles, 
and research vehicles. 

DSRC 
to improve travel time reliability,  

safety, throughput, and traveler information. also deployed and tested 
pedestrian and bicyclist safety smartphone-based applications. 

FL 

Tallahassee US90 
SPaT  

Challenge 
Deployment 

along US-90 
Mahan Drive, 
Tallahassee 

RSU on 22 signals, 
OBU DSRC 

to evaluate the operational and safety benefits of the SPaT applications 
along US 90. The short-term goal is to verify if SPaT will work effectively 
in hilly and forested terrain along US 90, while the overall long-term goal 
is to evaluate Dedicated Short-Range Communications (DSRC) efficiency 

and safety for road users along a signalized arterial corridor. 

FL Seminole County 
SR 434 Seminole County RSUs on 6 

intersections, OBU DSRC to implement CV technology  
and Signal Performance Metrics (SPM) 

FL 
Osceola County 

CV Signal  
Project 

Osceola County RSU on two signalized 
intersections DSRC 

to test Dedicated Short-Range Communications equipment and intersection 
processing equipment to gain experience and compile lessons learned in the 

deployment of CV infrastructure and applications. 
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FL Pinellas County 
SPAT 

along a portion of 
US 19 corridor, 
Pinellas County 

23 RSUs on 
intersections DSRC Broadcasting SPaT info. 

FL 

Tampa 
Hillsborough  
Expressway 
Authority  

(THEA) Connected 
Vehicle  

Deployment 

Tampa 

1,000 enhanced 
rearview mirror 

installed to display 
safety messages, 47 

RSUs on intersections, 
10 bus OBU, 8 street 

car OBU 

DSRC, Sattelite 
communication 

to transform the experience of automobile drivers, transit riders, and 
pedestrians  

in downtown Tampa by preventing crashes, enhancing traffc flow, 
improving transit trip times, and reducing greenhouse gas emissions. 

GA iATL CV2X Alpharetta 55 RSUs C-V2X to test a wide range of safety  
applications provided by C-V2X on public roads and in real traffic 

GA 

Marietta GA 
Emergency  

Vehicle Signal 
Preemption 

Marietta 
RSUs on 120 

Intersections, driver 
safety app 

DSRC First responders’ preemption 

GA 

North Fulton 
Community  

Improvement 
District 

Fulton County RSU on 44 
intersections 

4G LTE, DSRC, C-
V2X 

Green light priority for emergency 
 vehicles and transit buses. Drivers can connect to the app with 

TravelSafely app 

GA I-85/"The Ray" CV 
Testbed 

An 18-mile stretch 
of Interstate 85 in 

Georgia 
6 RSUs DSRC, C-V2X to immediately detect a crash and  

generate an alert to warn drivers about a crash on the road ahead. 

GA 

City of Atlanta 
Smart  

Corridor  
Project 

Atlanta 1000+ RSU at 
intersections DSRC, C-V2X 

Emergency Vehicle Preemption Pilot, 
 Transit Signal Priority Pilot, Incident Responder interchange preemption, 

Freight signal priority 

IN 

Indiana Connected 
Vehicle  
Corridor 

Deployment  
Project 

I-94 10 RSU at 
intersections DSRC Part of SPaT Challenge, 

MI 

U.S. Army Tank 
Automotive  
Research, 

Development &  
Engineering Center  
(TARDEC) "Planet 

M  
Initiative" 

along a 21-mile 
portion of I-69, St. 

Clair & Lapeer 
Counties,   

6 RSUs DSRC Curve speed warning, lane closure warning, speed recommendation and 
disabled vehicle warning 

MI 

Macomb County 
Dept.  

Roads DSRC 
Deployment  

(MDOT/SMART 
Pilot) 

Macomb County, 
MI 

750 RSU at signalized 
intersections, 

 Wi-Fi Vehicle 
Detectors 

DSRC Broadcasting SPaT information 

MI 
I-75 Connected 

Work Zone  
(Oakland County) 

3 Miles of I-75 in 
Oakland  

County, Michigan 

CCTV, Vehicle 
detectors at every mile,  

DMS sign, RSU at 
every mile, 

Environmental Sensor 
Station 

DSRC 

Automatically detect incidents and respond faster, notify motorists about 
travel times, traffic queues, speeds and weather-related events, Notify 

motorist of adverse conditions through use of safety applications such as 
Curve Speed Warning and Bride Deck Warning Systems (read more about 
these systems below), Improve safety through the work zone through use of 

advanced connected vehicle applications 

MI 

Road Commission 
for  

Oakland County 
DSRC 

Farmington Hills 17 RSU DSRC Broadcasting SPaT information 

MI 
Southeast 
Michigan  
Testbed 

Along I-96/I-696 22 RSU DSRC 
Dynamic Speed Harmonization, Incident Scene Work Zone Alerts, Eco 

Approach and Departure at Signalized Intersections, Motorist Advisories 
and Warnings 
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MI Safety Pilot Model  
Deployment 

U.S. 23 and 
Plymouth Road, 

Ann Arbor, 
Washtenaw 
Avenue, MI 

2700 OBU, 29 RSU, 
12 TSC DSRC to demonstrate the readiness of DSRC-based connected vehicle safety 

applications for nationwide deployment. 

MI MCity Testbed 
University of 

Michigan, Ann  
Arbor, MI 

RSU, Edge Computing 5G, V2X 
Transit Signal Priority, Emergency Vehicle Preemption, Dynamic Signal 

Optimization with Green Wave Advisory, and Vulnerable Road User 
Notification 

MI 

Ann Arbor 
Connected  

Vehicle Test 
Environment  
(AACVTE) 

27-square miles of 
the City of Ann 

Arbor 
25 RSU, 2500 OBU DSRC to assess the effectiveness of connected vehicle safety technology at 

reducing crashes. 

MI 

American Center 
for  

Mobility (Willow 
Run) 

Ypsilanti 
Township, MI RSU DSRC A facility for testing autonomous cars 

MI 
Michigan DOT 

Wayne  
County Project 

Wayne County, MI 12 RSU, 250 OBU DSRC to document lessons learned, benefits, and evaluate potential business 
models for future deployment opportunities. 

NV Las Vegas SPaT 
Corridor 

Freemont St. Las 
Vegas, NV RSU in 5 intersections DSRC Broadcasting SPaT and map information. 

NV 

Nevada DOT 
DSRC for  

Rural ITS (Washoe 
County) 

I-580/Washoe 
County, NV 

RSU, CCTV, Radar, 
Thermal/infrared, 
 Lidar, Microwave 

DSRC to optimize flow and respond to road conditions, including construction, 
special events, pedestrian and cyclist. 

NY 

New York City 
Connected  

Vehicle Project 
Deployment 

Manhattan, 
Brooklyn, NYC 450 RSU, 3000 OBU DSRC 

Emergency Electronic Brake Lights, Forward Crash Warning, Intersection 
Movement Assist, Blind Spot Warning, Lane Change Warning, Vehicle 
Turning Right in Front of Bus Warning, Red Light Violation Warning, 

Speed Compliance, Curve speed compliance, Speed Compliance in Work 
Zone, Oversize Vehicle Compliance, Emergency Communications and 
Evacuation Information, Pedestrian in Signalized Crosswalk Warning, 

Mobile Accessible Pedestrian Signal System 

OH 

Ohio Turnpike &  
Infrastructure 
Commission  

DSRC Projects 

60-mile section of 
Ohio turnpike 15 RSU DSRC Proof of concept project 

OH 
NW US33 Smart 

Mobility  
Corridor 

Marysville, Dublin, 
OH 

800-1000 OBUs, 27 
RSUs DSRC Improves Travel Time Reliability, Traffic Volumes Increase to Optimize 

Travel Lanes, Reduce Crashes 

PA 

PennDOT Signal 
Phase  

and Timing (SPaT)  
Deployments & 

Test Beds 

Cranberry 
Township, PA 

11 RSUs at 
intersections DSRC 

Improve Safety, Enhance Mobility, Prepare Workforce, Foster and Sustain 
 Partnerships, Increase Public Awareness, Strengthen Economic 

Collaboration 

PA SmartPGH Pittsburgh, PA 

135 intersections, 293 
CCTV, 37 Radio 

advisory transmitter, 
200 microwave traffic 
detector, 24 RSU, 93 

Radar 

DSRC Transit signal priority implementation 

PA 
PennDOT Ross 

Township  
Test Bed 

Baum Centre Ave 
Pittsburgh,  

PA 
45 RSUs, 726OBUs DSRC 

The FHWA grant will be used to deploy adaptive traffic  
signal controls & DSRC along the McKnight Road  

corridor. 

WI 
Connected Park 

Street  
Corridor 

along Park Street, 
Madison 

RSUs at 15 signalized 
intersections DSRC Transmit basic safety messages, give information about speed, location and 

heading 

NH SPaT Challenge Dover 

Traffic Controller, 
DSRC RSU, DSRC 

OBU, 
 V2I Hub, Traffic 

Server, LTE Radio 

DSRC, 4G LTE Comparing performance of DSRC with 4G LTE 

NJ 

Integrated 
Connected Urban 
 Corridor in New 
Jersey (ICUC NJ) 

Initiative 

Newark 8 RSU, air pollution 
sensor DSRC 

Provide traffic data analytics that can be useful in evaluating alternative 
traffic 

 operation strategies. 
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DL 
DelDOT SPaT 

Challenge  
Deployment 

Smyrna 11 RSUs at 
intersections DSRC Broadcasting SPaT information. 

MD Howard County, 
MD 

Howard County, 
MD 2 RSUs at intersections DSRC Broadcasting SPaT information. 

MD 

Montgomery 
County and Prince 

George County 
Connected 

Vehicles Pilots 

Montgomery 
County, MD 

Prince George 
County, MD 

More than 40 RSUs DSRC/CV2X Broadcasting Spat messages, intersection map data (MAP), pedestrian 
warning, and traveler and/or information messages 

MD Morgan State 
University Testbed Baltimore, MD 

2 RSUs at intersection, 
2 OBUs, 2 Lidar and 4 

CCTV cameras 
CV2X Broadcasting Spat messages, intersection map data, and traveler and/or 

information messages. 

VI Virginia Smart 
Roads 

including sections 
of Interstate 66, 
Interstate 495, 

 U.S. 29, and U.S. 
50 

49 roadside units 
(RSUs) DSRC 

The Virginia Smart Roads are controlled-access test tracks built to Federal 
Highway 

 Administration standards. The roads are equipped with advanced research 
infrastructure and are supported by a full-time staff that serve to coordinate 

all road activities and oversee operations. 

NC NC DOT DSRC Cary 16 RSUs at 
intersections DSRC Signal Preemption, Transit Signal Priority, Broadcasting SPaT info. 

GA Georgia DOT SPaT 
Project Atlanta 

54 RSUs at 
intersections and 12 

RSUs at  
freeways 

DSRC Broadcasting SPaT info and receiving basic safety messages. 

FL Smart Work Zones 

6 state road 
corridors: US 1, 
Dixie Highway, 

 Powerline Road, 
US 441, Hillsboro 

Boulevard, and 
Sample Road 

2 RSUs, CCTV 
Cameras, 2 Vehicle 

Detectors 
DSRC Traffic Queue Warning, Travel Time Advisory, Alternate Route Advisory 

AL 

University of 
Alabama, Center 

 for Advanced 
Vehicle 

Technologies & 
Alabama DOT 

Tuscaloosa 85 RSUs on 
intersections. DSRC Broadcasting SPaT info. 

TN TnDOT SPaT 
Challenge Project 

Cumberland Ave, 
Knoxville 

17 RSUs on 
intersections DSRC Broadcasting SPaT info. 

MN 

Roadway Safety 
Institute (RSI) 

 Connected Vehicle 
Testbed 

Minneapolis 1 RSU, 1 OBU, 7 
radars DSRC 

to implement and evaluate the next generation of vehicle-based freeway 
safety applications, to establish the backbone of the sensor communication 

network and data collection system along the testbed length. 

WY 

Wyoming 
Connected Vehicle 

 Project 
Deployment 

I-80 Wyoming 75 RSUs, 450 OBUs DSRC Reducing delays, improving safety, reducing severe weather-related 
accidents 

UT 
Salt Lake Valley 

Snowplow 
Preemption 

Salt Lake Valley 5 corridors, 55 
intersections DSRC Preemption for Snowplow vehicles 

UT 

Utah Transit 
Authority (UTA) 
 DSRC Traffic 

Signal Pilot Project 

Redwood Road, 
Salt Lake City area 

24 RSUs on 
intersections DSRC to keep UTA buses on schedule. 

ID Ada County 
Highway District Ada County 20 RSUs, 20 OBUs DSRC Validating communication architecture and control technology readiness 

WA 

Washington State 
Transit Insurance 

Pool (WSTIP) 
Safety-Collision 
Warning Pilot 

Project 

Washington State 4 cameras on 38 buses Internet 
to test and analyze a collision avoidance system that could help bus drivers 

reduce 
 the number and severity of collisions 

HI Nimitz Corridor 
Project Honolulu RSUs on 16 traffic 

signals C-V2X 

Red Light Violation Warning, Pedestrian and Cyclist Collision Warnings, 
Emergency 

 Vehicle Preemption, Transit Signal Priority, Traffic Queue Warning, the 
TravelSafely™ smartphone app, and Signal-Phase and Timing (SPAT). 
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Table 2 Autonomous Vehicle (AV) Testbeds in the Country 

State Title Location Connected/Not 
Connected Equipment Communication Brief Description 

MI Mcity Ann Arbor Connected RSUs, OBU, Self-
Driving Cars V2X 

In 32 acres area, it simulates urban and suburban 
environments to test autonomous technologies in various 

scenarios. 

CA GoMentum Station Concord Connected 
RSU at 3 

intersections (2 more 
are planned), OBU 

DSRC, V2X 

In a 5000 acres area, multiple tests including Transit signal 
priority, Conditional transit signal priority, Vulnerable 

Road user (VRU) detection, red light violation warning, 
and Signalized left turn assist can be performed 

MI American Center 
for Mobility Ypsilanti Connected RSUs, OBU, Self-

Driving Cars DSRC, V2X 

On over 500 acres, it provides an Advanced Mobility 
Proving Ground with test environments featuring 

specialized infrastructure in various environment including 
urban, rural, and offroad for connected and autonomous 

vehicles 

PA 
Pittsburgh 

Autonomous 
Vehicle Test Site 

Pittsburgh Connected RSUs, OBU, Self-
Driving Cars V2X 

Focus on the transportation safety, research and 
operational needs of the region by three entities: Aurora, 

Carnegie Mellon University AV Center, Motional 

TX 
Texas A&M 

University RELLIS 
Campus 

Bryan Not Connected Self-Driving 
Shuttles, cars, trucks - 

Aims to unify research and development of autonomous 
vehicles and systems including autonomous ground 

vehicles (shuttles, cars, trucks) 
Safety for autonomous vehicles (virtual, scaled, Slow 

moving, cars, trucks) 

TX Texas Innovation 
Alliance 

Arlington, 
Houston, Frisco Not Connected Slow peed Self-

Driving Shuttles - Fixed route off main road tests, idling in place until 
boarded. 

OH 

Ohio State 
University Center 
for Automotive 

Research 

Columbus Connected RSU, OBU, Self-
Driving Cars V2X 

This testing focuses on Smart Autonomous Shuttles, 
Autonomous Vehicle Path Planning and Tracking, 

Hardware-in-the-Loop Evaluation, Collision Avoidance 
for Road and Pedestrian Safety, and Connected Vehicle 

Technologies for Safety and Mobility. 

MA Massachusetts AV 
Testing Program 

Arlington, 
Boston, 

Braintree, 
Brookline, 
Cambridge, 
Chelsea, etc. 

Not Connected Self-Driving Cars - For Authorized testing of automated vehicles on public 
street 

GA Curiosity Lab AV 
test track 

Peachtree 
Corners Not Connected Self-Driving Cars - 

A 1.5-mile AV test track, complete with steep grades, 
curves and trees. Even though there were connected 

vehicle infrastructure in the area. It wasn’t used for the AV 
testing. 

 

Real-time Communication Between RSUs and OBUs for 
Broadcasting Static Warning Messages 
Enhancing the safety of VRUs, including pedestrians and cyclists, is a crucial aspect of urban 
traffic management [18]. Protecting VRUs requires the implementation of advanced technologies 
and strategic planning to protect these two at-risk groups in urban environments. Signalized 
intersections can be especially risky for VRUs because of the frequent interactions between 
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vehicles and VRUs at these locations [19]. Moreover, pedestrians and bicyclists face unique risks 
at intersections due to their limited visibility and lack of protection compared to drivers [20]. 
Protecting VRUs requires the implementation of advanced technologies and strategic planning to 
protect these two at-risk groups in urban environments. One effective strategy involves using 
RSUs in CAV environments [21,22]. RSUs send real-time safety alerts and traffic safety messages 
to vehicles, significantly reducing the risks associated with intersections. By providing timely 
warnings and critical information, such as signal phase and timing, drivers can be better informed 
and make safer decisions, especially in areas with high pedestrian and cyclist activity [23].  

This section evaluates the effectiveness of two different safety messages: a pedestrian safety 
message at the Cold Spring Ln - Hillen Rd intersection (the first intersection in the CAV testbed) 
and bicyclist safety message at the E 33rd - Hillen Rd intersection (the second intersection in the 
CAV testbed). In the study, thirty-two (32) participants were invited to drive on the CAV testbed 
with their personal vehicles. Their vehicles were equipped with OBUs, which could detect the 
geographic location of the vehicles, communicate with the LiDAR and RSU systems [24], and 
broadcast both pre-configured safety messages to the drivers. The effectiveness of the messages 
in improving safety at congested intersections was assessed by analyzing data on speed changes, 
acceleration, braking habits, and road positioning collected from the participants before and after 
the messages were broadcast. 

The locations were chosen based on their high pedestrian and bicycle traffic, with the former 
located near major university buildings and the latter adjacent to recreational areas. Moreover, the 
set of messages was strategically broadcasted in locations with higher crash risks involving 
pedestrians and cyclists to assess how drivers responded to these instructions. Speed reduction is 
particularly important, as lower speeds can significantly lessen the severity of conflicts and crashes 
by allowing more time for drivers to react. Advising drivers to stay in the right lane prevents 
dangerous lane changes and reduces conflicts with VRUs.  

The two safety messages adhered to the J2735 standard, which outlines the necessary protocols 
for vehicular communication and ensures the interoperability and reliability of the transmitted 
messages [25]. The safety messages were generated and verified by the USDOT’s TIM message 
website [26]. The content of the messages was then uploaded to the OBUs' dashboards, which was 
displayed on a tablet to provide participants with essential real-time information during their drive 
on the CAV testbed. The tablet provided SPaT information, showing the transition between green, 
yellow, and red signal phases at each intersection, along with the remaining time before these 
changes. Participants received specific Traveler Information Messages (TIMs) broadcast at 
intersections, delivering timely safety alerts like pedestrian crossings and bike lane information, 
all in line with the J2735 standard. Figure 8 illustrates the tablet’s interface and the real-time 
communication between the OBU, RSU, signal controller, and LiDAR on the CAV testbed. 
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Figure 8 Real-Time Communication and Tablet View on the CAV Testbed 

The tablet also collected key datasets every 0.1 seconds for each participant, including speed, road 
elevation, acceleration, and latitude and longitude. Speed and acceleration data show how vehicles 
respond to safety messages, while road elevation impacts visibility and braking distances. Latitude 
and longitude offer precise location data, aiding in the analysis of specific roadway conditions and 
identifying VRU crash hotspots. The data was collected as hashed datasets. To decode this 
information, Wireshark software [27] and the USDOT decoder [26] were used. The agreement 
between the data decoded by Wireshark and the USDOT website highlights the reliability of the 
collected datasets. This consistency ensures that the safety analysis is based on accurate and 
verifiable data.  

Prior to the live test, data was collected from 32 participants through a pre-survey that gathered 
detailed demographic, socio-economic, and driving background information. The survey also 
assessed their knowledge and use of CAV technology, familiarity with CAV testbeds, reliance on 
real-time traffic data, and awareness of vehicle connectivity and autonomy. Participants were 
informed about the CAV testbed and route but were not told about the safety messages they would 
receive, enhancing the validity of the data and ensuring a realistic assessment of driving behavior. 
The pre-survey revealed that 80.6% of participants were male and 19.4% were female. Among all 
participants, 44.4% were aged 18-25 years, 30.6% were aged 26-35 years, 19.4% were aged 36-
45 years, and 5.6% were aged 46-55 years, respectively. Additionally, the survey indicated that 
52.8% of participants identified as Black or African American, 36.1% as White, 5.6% as Asian, 
and 5.6% as belonging to other ethnicities. In terms of educational status, 52.8% were graduate 
students, 27.8% were undergraduate students, 16.7% were postgraduate students, and 2.8% had a 
high school education or less. 

After completing the pre-survey, participants were directed to drive on the CAV testbed, where 
they encountered three distinct scenarios. The first scenario acted as a baseline, with no safety 
messages being sent. This allowed for the observation of participants' usual driving behaviors 
under normal conditions and provided a reference point for evaluating the impact of the following 
scenarios. 
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The design of scenarios 2 and 3 was carefully planned to assess specific safety situations in line 
with industry standards, particularly the J2735 standard [25]. Scenario 2 and 3 featured messages 
followed J2735 guideline to ensure they met safety protocols for protecting VRUs. Adhering to 
these standards was essential for maintaining the study’s integrity and ensuring reliable results, as 
variations in message content or timing could impact participants’ perceptions and responses. 
Proper placement of RSUs and precise timing of message broadcasts were critical for effective 
communication and minimizing delays. The safety messages were broadcasted at random 
intervals. The random broadcasting prevents biases or expectations among participants, ensuring 
their reactions were genuine and reflective of natural responses to unexpected stimuli. The random 
broadcasting provided a thorough assessment of how messages affect driving behavior under 
different conditions. Thus, it provides valuable insights into driver reactions to unforeseen alerts. 
Based on this variability, participants face unexpected messages on the testbed, thus validating the 
practical utility of the safety messages. Adhering to these standards was essential for maintaining 
the study’s integrity and ensuring reliable results, as variations in message content or timing could 
influence participants' perceptions and responses. The placement of RSUs and the timing of 
message broadcasts were carefully managed to ensure effective communication while minimizing 
delays. A key aspect of the study was the random broadcasting of safety messages, which aimed 
to replicate real-world driving conditions where hazards and alerts do not follow predictable 
patterns. While one might argue that random broadcasting makes the messages appear less precise 
to participants, such variability is essential for maintaining the study's ecological validity. In real-
life scenarios, drivers are not primed to expect alerts at specific times or intervals—unexpected 
events are the norm. If the safety messages were delivered at fixed or predictable intervals, 
participants might adapt their behavior or develop anticipatory responses, which could undermine 
the authenticity of their reactions. In contrast, random intervals prevent participants from 
anticipating the alerts, ensuring that their responses remain spontaneous and reflective of how 
drivers typically react to unforeseen hazards on the road. This randomness also allows the study 
to capture a wider range of participant behaviors across varying situations, providing a more 
comprehensive understanding of how safety messages influence driving behavior under diverse 
conditions. For example, drivers might react differently when alerts are received in dense traffic 
compared to lighter traffic or during moments of high cognitive load. The unpredictability 
introduced by random broadcasting enables the evaluation of these nuanced responses, ultimately 
validating the practical utility of safety messages. Thus, this approach ensures that the insights 
gained from the study are both reliable and applicable to real-world scenarios, where precise timing 
of alerts is rarely guaranteed. 

In scenario 2, safety messages were broadcast at two intersections to enhance driver awareness. At 
Cold Spring Ln - Hillen Rd intersection, the message "Pedestrian signal, please caution, stay in 
lane" alerted drivers to pedestrian crossings near the university. At E 33rd - Hillen Rd intersection, 
the message "Bicyclists on roadway, please cross intersection with care" warned drivers about 
cyclists’ presence on the road. Scenario 3 introduced messages for specific road conditions 
including "reduce your speed" near the Morgan Bridge to prevent pedestrian crashes and "keep to 
the right lane" at E 33rd - Hillen Rd to accommodate bike lanes and enforce speed limits. These 
messages aimed to promote safer interactions with pedestrians and cyclists and reduce collision 
risks. 
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After completing the three driving scenarios on the CAV testbed, participants were asked to fill 
out a post-survey questionnaire. This survey aimed to gather feedback on their overall experience 
and their perceptions of the safety messages received during the test drive.  

The analysis of driver behavior before and after receiving safety messages was conducted over a 
20-second period [28, 29] both prior to and following message reception. The 20-second window 
was chosen to allow drivers enough time to process, understand, and respond to the safety 
messages, capturing both cognitive and behavioral reactions. Shorter intervals, like 10 or 15 
seconds, might not allow sufficient time for drivers to fully process and adjust their behavior based 
on the message. By using a 20-second interval, the analysis encompasses the complete process of 
receiving the message, reflecting on its content, and making necessary adjustments in driving 
behavior. This method accounts for varying response times among drivers, including those who 
may need more time to react. The focus of the analysis was on changes in speed, acceleration, and 
lateral distance relative to the road's curbs. Examining these factors during a 20-second interval 
reveals how drivers adjust their behavior in response to the safety messages. Table 3 and 4 illustrate 
the changes in speed and acceleration observed before and after receiving the safety messages, 
respectively. 
 
Table 3 Percentage Changes in Speed in Scenarios 2 and 3 by Participant Gender 

Scenario Message 
Content 

Interval: 20 Seconds Before to The Message Receiving Point 

Speed Acceleration 
Male – 

increase 
(%)  

Male – 
Decrease 

(%) 

Female – 
increase 

(%)   

Female – 
Decrease 

(%) 

Male – 
increase 

(%)   

Male – 
Decrease 

(%) 

Female – 
increase 

(%)   

Female – 
Decrease 

(%) 

#2 

Pedestrians 
Safety 

Message 
25 46.9 6.3 21.9 31.3 50 6.3 12.5 

Bicyclists 
Safety 

Message 
40.6 40.6 12.5 6.3 46.9 34.4 9.4 9.3 

#3 

Reduce Your 
Speed 37.5 43.8 6.3 12.5 40.6 40.6 9.4 9.4 

Keep to the 
Right Lane 50 31.3 9.4 9.4 53.1 28.1 9.4 9.4 

 

 

 

 

 

Table 4 Percentage Changes in Acceleration in Scenarios 2 and 3 by Participant Gender 

Scenario Message 
Content 

Interval: The Message Receiving Point to 20 Seconds Afterward 

Speed Acceleration 
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Male – 
increase 

(%)  

Male – 
Decrease 

(%) 

Female – 
increase 

(%)   

Female – 
Decrease 

(%) 

Male – 
increase 

(%)   

Male – 
Decrease 

(%) 

Female – 
increase 

(%)   

Female – 
Decrease 

(%) 

#2 

Pedestrians 
Safety 

Message 
50 31.3 3.1 15.6 43.8 37.5 3.1 15.6 

Bicyclists 
Safety 

Message 
15.6 65.6 9.4 9.4 15.6 65.6 12.5 6.3 

#3 

Reduce Your 
Speed 21.9 59.4 12.5 6.3 21.9 59.4 6.3 12.5 

Keep to the 
Right Lane 28.1 53.1 6.3 12.5 28.1 53.1 6.3 12.5 

 

When comparing the interval from 20 seconds before receiving the messages to the interval from 
receiving the messages to 20 seconds after, several key differences emerge. 

• Pedestrian Safety Message: During the 20 second interval prior to receiving the message, 
46.9% of males decreased speed. After the message, the proportion of males who decreased 
their speed dropped to 31.3%, while 50% increased speed to return to or maintain desired 
speeds. Females maintained a cautious approach throughout, with minimal changes in 
speed or acceleration. 

• Bicyclist Safety Message: Prior to receiving the bicyclist safety message, 40.6% of males 
increased speed and 40.6% decreased it. Post-message, a significant 65.6% decreased both 
speed and acceleration, indicating a cautious approach to avoid potential collisions with 
cyclists. Females showed low percentages in both intervals, indicating a consistent cautious 
approach. 

• Reduce Your Speed Message: Initially, 43.8% of males decreased speed and 40.6% 
decreased acceleration. Post-message, 59.4% of males decreased their speed demonstrating 
greater compliance with the speed reduction instruction. Females remained relatively 
unchanged, showing steady behavior. 

• Keep to the Right Lane Message: Initially, 50% of males increased speed and 53.1% 
increased acceleration to merge smoothly. Post-message, 53.1% decreased speed and 
acceleration, suggesting adjustments to lane changes. Females again showed minimal 
changes, indicating consistent cautious driving. 

The trajectory of each vehicle was comprehensively analyzed to determine how the driver veered 
toward the right or left curbs of the road. Each vehicle in the study was equipped with an OBU 
that used a built-in Global Positioning System (GPS) receiver to collect geographic coordinates. 
The GPS receiver determines the vehicle’s position by communicating with at least four satellites, 
calculating latitude and longitude based on precise timing signals [30]. This process allows the 
OBU to track the vehicle's trajectory in real-time. GPS accuracy typically ranges from 9.8 to 32.8 
feet (or 3 to 10 meters), depending on factors like satellite geometry, signal obstructions from 
buildings or trees, atmospheric conditions, and the quality of the GPS receiver.  

Before receiving safety messages, participants’ driving trajectories showed typical behavior, often 
including slight veers toward the right or left curb. After receiving the messages, significant 
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adjustments in driving behavior were observed. Changes in speed and acceleration, as seen through 
trajectory analysis, highlight the drivers’ responses to the safety messages. Drivers' tendencies to 
adjust their path to accommodate cyclists or to enhance pedestrian safety indicates an increased 
awareness and adherence to the conveyed safety protocols. This immediate adjustment 
demonstrates the drivers’ ability to react to real-time information and mitigate potential risks 
effectively. Table 5 illustrates the changes in lateral distance (shifts toward the right or left curbs) 
observed among male and female participants in scenarios 2 and 3. 

Table 5 Lateral Distance Changes (Tilting Toward Right or Left Curbs) Among Male and Female 

Participants in Scenarios #2 and #3 

Scenario Message 
Content 

Lateral Distance 
Male – Tilt 
to the right 
curb (%) 

Male – Tilt 
to the left 
curb (%) 

Female – Tilt 
to the right 
curb (%) 

Female – Tilt 
to the left 
curb (%) 

#2 

Pedestrians 
Safety Message 59.4 21.9 15.6 3.1 

Bicyclists Safety 
Message 28.1 53.1 3.1 15.7 

#3 

Reduce Your 
Speed 71.9 9.4 9.4 9.3 

Keep to the 
Right Lane 71.9 9.4 15.6 3.1 

 

The trajectory analysis under scenarios 2 and 3 provides insight into how participants responded 
to traffic safety messages by adjusting their lateral positions on the road. The key findings from 
Table 5 are as follows: 
 

• High Compliance with Lane-Keeping and Speed Reduction Messages: A significant 
proportion of participants, especially males, adhered to the "keep to the right lane" and 
"reduce your speed" messages, as evidenced by 71.9% of participants tilting to the right 
curb for both messages.  

• Cautious Driving Behavior Among Females: Female participants consistently displayed 
lower percentages of tilting to either curb, indicating a steady and cautious driving 
approach. This contrasts with the more aggressive adjustments observed among males, 
highlighting gender-based differences in response to traffic safety messages. 

• Impact of Environmental Factors: The location of Morgan State University's campus 
buildings and bike lanes significantly influenced driver behavior. High pedestrian activity 
at E Cold Spring Ln - Hillen Rd led to substantial right tilting, while the presence of bike 
lanes before E 33rd - Hillen Rd prompted drivers to move left, ensuring cyclist safety. 

Figure 9 illustrates the locations of the right and left curbs at both intersections, as well as the bike 
lane at the E 33rd and Hillen Road intersection. 
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Figure 9 Positions of Left and Right Curbs at E Cold Spring Ln - Hillen Rd (Left Figure) and E 33rd St 

- Hillen Rd (Right Figure) Intersections 

To accurately interpret the dataset and analyze driver behavior in response to safety messages 
broadcasted within the CAV testbed, it is essential to select machine learning models that are both 
effective and precise. This section evaluates suitable models that are designed to capture the 
relationships between independent variables (such as demographics and driving behaviors) and 
dependent outcomes (such as changes in speed, acceleration, and lateral distance). In order to 
establish meaningful relationships between the dependent and independent variables, Logistic 
Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) models were 
evaluated. The machine learning models focused on a critical 20-second window following the 
receipt of the safety message to ensure efficient and relevant results. The purpose of this time 
frame is to allow participants to process the information they have received and make an informed 
decision. In Python, several robust machine learning libraries provide efficient algorithms for 
implementing LR, RF, and SVM models. Scikit-learn is a widely used library offering 
straightforward implementations of these algorithms. The report utilized the Scikit-learn library to 
develop machine learning models.    

LR is valuable for its simplicity and effectiveness in binary classification tasks, while RF provides 
robust predictions even when the data contains noise or missing values. RF was also selected due 
to its robustness in handling large numbers of input features and preventing overfitting through 
ensemble learning. SVM is advantageous for its capacity to find optimal hyperplanes that 
maximize the margin between classes, and it offers strong performance in scenarios where the data 
is not linearly separable. In contrast, other models such as deep learning networks, while powerful, 
may require larger datasets and more computational resources, and they often lack the 
interpretability needed for practical application and policymaking in traffic safety analysis. 
Hereupon, the report concentrated on LR, RF, and SVM models. 

As the machine learning model results suggest, gender can influence driving behavior due to 
various psychological and cultural factors. Age is also a factor, as younger and older drivers may 
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have different reflexes and comfort levels with technology, leading to different responses to safety 
messages—older drivers often being more cautious but less quick to adapt to new technologies. 
Ethnicity and education can shape driving habits and attitudes toward safety, with cultural norms 
and levels of awareness about technologies. A driver's experience and familiarity with CAV 
technology can further affect how well they understand and respond to the safety messages. As a 
result of repeated interactions with warning systems, familiarity and comfort with the technology 
may improve, thereby improving reaction times and decision-making during critical moments. In 
addition, it can help drivers gain a better understanding of the capabilities and limitations of the 
system, thereby promoting a more informed and safer driving style. Table 6 illustrates the highly 
correlated independent variables identified by machine learning models, the training models used, 
and the accuracy rates of the developed models. Table 6 illustrates the machine learning models 
used in this study.  

Table 6 Machine Learning Models Results 

Scenario Message 
Content 

Dependent 
Variables 

Independent 
Variables – 
The Result 

of 
Correlation 

Matrices 

Training 
Models 

Accuracy 
Rate- The 

best 
model 

#2 

Pedestrians 
Safety 

Message 

Speed 
Familiarity with 
CAV, Ethnicity, 

Driving Experience 
LR 0.78 

Acceleration 
Familiarity with 
CAV, Ethnicity, 

Driving Experience 
LR 0.783 

Lateral Distance 
Familiarity with 
CAV, Ethnicity, 

Driving Experience 
SVM 0.8 

Bicyclists 
Safety 

Message 

Speed Gender, Age 
Ethnicity RF 0.785 

Acceleration Gender, Age 
Ethnicity RF 0.692 

Lateral Distance Gender, Age 
Ethnicity LR 0.683 

#3 

Reduce 
Your 
Speed 

Speed Gender, Age, 
Ethnicity SVM 0.717 

Acceleration Gender, Age, 
Ethnicity SVM 0.719 

Lateral Distance Gender, Age, 
Ethnicity  SVM 0.817 

Keep to 
the Right 

Lane 

Speed 
Education status, 

Driving experience, 
Familiarity with 

CAV 
SVM 0.775 

Acceleration 
Education status, 

Driving experience, 
Familiarity with 

CAV 
SVM 0.783 

Lateral Distance 
Education status, 

Driving experience, 
Familiarity with 

CAV 
SVM 0.88 

The results shown in Table 6 demonstrate that gender, age, ethnicity, education status, driving 
experience, and familiarity with CAV technology all significantly contribute to how drivers adjust 
their speed, acceleration, and lateral position when receiving safety messages. These findings 
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highlight the complexity of driver behavior and the necessity for personalized safety interventions 
that consider diverse characteristics.  

The LR model showed strong performance in predicting speed and acceleration, with accuracy 
rates of 0.78 and 0.783, respectively. These results suggest that the independent variables of 
familiarity with CAV technology, ethnicity, and driving experience are significant predictors of 
how drivers adjust their speed and acceleration in response to pedestrian safety messages. The 
SVM model demonstrated the highest accuracy in predicting lateral distance (0.80) and this 
indicates its ability to capture subtle changes in vehicle positioning along the CAV testbed. 

For bicyclist safety, the RF model demonstrated the highest accuracy in predicting vehicle speed, 
achieving a score of 0.785. This finding highlights the significance of variables such as gender, 
age, and ethnicity in shaping driver behavior when cyclists are present. However, the RF model's 
accuracy in predicting acceleration was lower at 0.692, suggesting that additional factors may 
influence driver responses in these situations. In addition, the LR model demonstrated a suitable 
level of accuracy when it came to assessing lateral distance, with an accuracy of 0.683. 
Consequently, the LR model may be useful in understanding how drivers position themselves in 
relation to cyclists on the road. 

In scenario 3, after receiving messages such as "reduce your speed" and "keep to the right lane", 
the SVM model consistently outperformed others across all dependent variables. The high 
accuracy rates indicate that the independent variables—ethnicity, gender, age, education status, 
driving experience, and familiarity with CAV technology—are crucial in shaping how drivers 
interpret and respond to these messages.  

The Advantages of LiDAR Sensors in Recognizing Jaywalking Events 
at Signalized Intersections 
Regarding the jaywalking events detection by the LiDAR sensor, two research studies have been 
conducted and published. This section provides a summary of both studies.  

The first study [31] gathered real-time data on jaywalking incidents using LiDAR sensors at the 
Hillen Rd - E 33rd Street intersection in Baltimore. Over a three-month period, the study detected 
585 events of jaywalking and analyzed factors contributing to these events. The research employed 
generalized linear regression and K-means clustering to identify key variables linked to jaywalking 
frequency, including pedestrian speed, average pedestrian-vehicle time gaps, vehicle-pedestrian 
conflict rates, and weather conditions. Findings indicate that increased jaywalking correlates with 
a higher frequency and severity of vehicle-pedestrian conflicts, with faster jaywalking speeds 
exacerbating the risks. Additionally, adverse weather conditions, particularly cloudy and rainy 
days, significantly influence the propensity for jaywalking, highlighting the need for targeted 
safety improvements.  

This analysis examined jaywalking patterns across different approaches to an intersection by 
collecting various metrics such as average vehicle speeds, daily vehicle and pedestrian counts, and 
the frequency and severity of vehicle-pedestrian conflicts. LiDAR technology was employed to 
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track jaywalkers' trajectories with high precision, capturing geographical coordinates and 
movement from the moment they entered the intersection until they existed. The study identified 
potential jaywalking zones outside crosswalks based on precise positional data. The time duration 
and average speed of jaywalking events were computed using LiDAR data. Over a three-month 
period, additional factors including weather conditions, vehicle speeds, traffic signal timings, road 
gradients, and infrastructure features (e.g., medians, building entrances, and vegetation) were 
assessed. Statistical analysis was conducted using SPSS software to evaluate the impact of these 
variables on jaywalking frequency and severity. The LiDAR sensor, installed with a 60-meter (197 
ft.) detection radius, identified a total of 585 jaywalking pedestrians over a three-month period. 
The data showed a significant concentration of jaywalkers in the northern approach, with 572 
detected events, while the western approach had 12, and the eastern approach had just 1. Figure 
10 illustrates the heat map depicting the distribution of jaywalkers across the different approaches 
to the intersection. 

 
Figure 10 The Frequency of Jaywalkers at Different Approaches to the Intersection 

 

Figure 11 illustrates the average speed of jaywalkers across different times of day and varying 
traffic conditions, providing insights into pedestrian behavior patterns and the potential impact of 
traffic flow on jaywalking tendencies. 
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Figure 11 Average Speed of Jaywalkers 

To analyze jaywalking behavior on the northern approach of the intersection, where 98% of events 
were detected, several independent variables were examined over a three-month period. These 
variables included the average speed of jaywalkers, duration of jaywalking, pedestrian traffic 
signal performance, average Post Encroachment Time (PET), frequency of vehicle-pedestrian 
conflicts, and weather conditions. The performance of pedestrian signals was monitored using 
CCTVs. The study investigated the relationship between jaywalking behavior and various factors, 
including the influence of residential and environmental features on pedestrian behavior. The 
analysis found that jaywalking frequency was positively correlated with average speed, average 
PET, and weather conditions, but negatively correlated with the duration of jaywalking and 
frequency of vehicle-pedestrian conflicts. The K-means clustering, which categorized the data into 
five clusters with significant accuracy, revealed a strong relationship between jaywalking 
frequency and the aforementioned factors.  

In the second study [32] examined 1,000 jaywalking events over a six-month period, identifying 
key independent variables that are highly correlated with jaywalking frequency. These variables 
include traffic signal controller patterns, signal phases, vehicle-pedestrian conflicts, weather 
conditions, vehicle and pedestrian volumes, walking patterns towards medians, and the ratio of 
jaywalkers. Advanced statistical regression models, particularly an optimal Poisson regression 
model, were employed to uncover insights into the complexities of jaywalking behavior. The 
analysis revealed significant findings, such as a notable decrease in jaywalking frequency during 
morning and mid-day signal controller patterns compared to evening patterns, with reductions of 
44.7% and 34.4%, respectively. The study also finds that the severity of vehicle-pedestrian 
conflicts increases with the number of jaywalkers, highlighting the need for measures that manage 
pedestrian flow to reduce conflict risks. Additionally, the presence of vegetation in medians is 
identified as a critical factor that significantly raises the frequency of jaywalking. 
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These results offer a detailed understanding of the interactions between environmental, temporal, 
and behavioral factors affecting jaywalking. They provide valuable insights for decision-makers 
and transportation specialists to develop targeted safety interventions, ultimately enhancing 
pedestrian safety and improving infrastructure at key urban intersections. 

By using SPSS software, two regression models including Poisson and Negative Binomial were 
developed, and the response variable was the number of jaywalking events per day. The LiDAR 
sensor was installed on the northeast side of the Hillen Rd – E 33rd Street intersection in Baltimore 
City, MD. This intersection was selected due to its high frequency of vehicle-pedestrian conflicts 
and the significant pedestrian interest in crossing outside designated crosswalks to reach 
Montebello Lake located to the south. Figure 12 illustrates the location of Hillen Rd and E 33rd 
street Intersection in Baltimore City. 

 
Figure 12 Hillen Rd and E 33rd Street Intersection 

The vehicle speed analysis revealed changes in average speed across various directions: from 20.5 
to 30.5 mph in the north-south direction, from 21.1 to 26.1 mph in the south-north direction, from 
21.7 to 24.2 mph in the east-west direction, and from 18.6 to 25.5 mph in the west-east direction. 
Vehicle-pedestrian crashes are more likely to occur in north-south and south-north directions due 
to the higher average daily speed. 

The V2P conflict analysis revealed that more frequent and severe vehicle-pedestrian conflicts 
occurred in the WN (EBL), EN (WBR), WE (EBT), and SN (NBT) movements. A significant 
percentage of conflicts between vehicles and pedestrians occur when either the origin or 
destination of the movement is in the north of the intersection. Considering the frequency and 
severity of conflicts, the movements WN or EBL (1381 conflicts with a severity of 538.3), EN or 
WBR (967 conflicts with a severity of 353.5), and SN or NBT (809 conflicts with a severity of 
299.1) have a higher probability of vehicle-pedestrian crashes. The severity of conflicts at 
signalized intersections refers to the potential risk or intensity of collisions based on factors like 
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vehicle speeds, trajectories, and proximity. The hourly frequency of vehicle-pedestrian conflicts 
was also analyzed. The intervals 14:00-15:00 PM (10.2% of total conflicts), 08:00-09:00 AM 
(9.4% of total conflicts), and 15:00-16:00 PM (8.9% of total conflicts) were recognized as critical 
daily intervals. 

The LiDAR sensor recorded 1000 jaywalking events over six months, with a significant number 
occurring in the northern approach (southbound) to the intersection. The intervals 15:00–16:00 
PM (12.8% of total jaywalking events), 16:00–17:00 PM (11.8% of total events), and 09:00–10:00 
AM (9.7% of total events) were identified as critical daily intervals. The trajectory of jaywalking 
events revealed that many occurred in the southbound direction between residential areas and the 
lake. Despite the pedestrian signal functioning well at all intersection approaches, pedestrians often 
choose to cross outside of the crosswalk in the northern approach (southbound). 

As an insightful contribution, the negative binomial model revealed a significant correlation 
between the frequency of vehicle-pedestrian conflicts and the occurrence of jaywalking events. 
Specifically, the presence of vegetation in the median was associated with a 42.3% increase in 
jaywalking events. The Poisson model similarly confirmed the impact of median vegetation on 
jaywalking frequency. Additionally, an increase in jaywalking events was found to raise the 
likelihood of vehicle-pedestrian conflicts by 4.3%. The analysis also showed that jaywalking rates 
are notably lower during morning and mid-day compared to the evening, with reductions of 47.5% 
and 36.8%, respectively, in relation to the evening signal controller patterns. 

To compare the results of both models, the Likelihood Ratio (LR) test was employed to assess the 
relative efficiency of Poisson versus negative binomial regression models. This test evaluates the 
overall model fit by comparing it to a baseline model with no predictors (the "null" model). In 
comparing the LR statistics of the Poisson and negative binomial models, a higher LR statistic 
indicates a superior fit of the model to the data. Additionally, models with lower Akaike 
Information Criterion (AIC) values are typically favored, as they suggest a more parsimonious fit. 
Based on the higher Chi-Square value and lower AIC observed, the Poisson model demonstrates 
a better fit for the data compared to the negative binomial model. 

The Role of CAV Testbeds in Detecting V2P Conflicts at Signalized 
Intersections 
This study examined the real-time traffic data collected at the Cold Spring Ln – Hillen Rd 
intersection in Baltimore City, focusing on a period from May 1st to August 31st, 2022 [33]. The 
data encompassed daily vehicle volumes, including passenger cars, buses, trucks, as well as VRUs 
such as pedestrians and bicyclists. The analysis covered key metrics like Post Encroachment Time 
Threshold (PET), which measures the time interval between the departure of an encroaching 
vehicle or pedestrian from a conflict point and the arrival of the vehicle or pedestrian with the 
right-of-way. The study identified 848 vehicle-pedestrian conflicts over the four-month period, 
with a new methodology proposed for classifying PET values and a novel risk index introduced. 
This index integrates conflict frequency and severity, along with vehicle and pedestrian volumes 
and trajectories, to provide a comprehensive safety assessment. The findings highlight the need 
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for enhanced safety measures at the intersection, particularly at the western and southern 
approaches. 

Based on the trajectory analysis of leading and following objects in vehicle-pedestrian conflicts, 
four categories have been established to classify the severity of these conflicts. "Serious" conflicts, 
characterized by a higher potential for fatalities and injuries, are distinguished from other types of 
conflicts by their severity. A higher PET is associated with a lower likelihood of pedestrian injuries 
or fatalities, making general conflicts less severe compared to serious conflicts [34]. The same 
methodology applies to slight and potential conflicts, with potential conflicts indicating a greater 
longitudinal distance between the leading and following objects. In such cases, the pedestrian can 
often pass the conflict point before the motorized vehicle arrives. By analyzing the time to collision 
for all recorded near-crash conflicts, a numerical value for each conflict was determined. The 
proposed PET categories are as follows: 

• PET < 0.7 seconds: Serious conflict (highest severity) 
• 0.7 seconds ≤ PET < 1.31 seconds: General conflict 
• 1.31 seconds ≤ PET < 2.25 seconds: Slight conflict 
• 2.25 seconds ≤ PET ≤ 5 seconds: Potential conflict (least severity) 

The longitudinal and lateral positions of conflicts were analyzed using an image processing plugin 
in MATLAB to generate a conflict heat map. This analysis of vehicle-pedestrian conflicts was 
approached from three perspectives: 

• Conflicts based on leading-following vehicle interactions. 
• Conflicts categorized by right- and left-turn movements. 
• Conflicts occurring during different phases of the traffic signal. 

For each approach, a risk index value was determined, offering a comprehensive assessment of 
conflict severity at the intersection. Figure 13 demonstrates the total frequency of conflicts analysis 
in each of the eight sections of the intersection.  
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Figure 13 The Frequency of Total Conflicts in Each  Section of the Intersection (left figure) and Zoning 

of the Intersection (right figure) 

 

Figures 14 and 15 illustrate, respectively, the hourly frequency and severity (1/PET) of total 
collected conflicts over a four month interval. 

 
Figure 14 The Hourly Frequency of Total Collected Conflicts 
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Figure 15 The Hourly Severity of Total Collected Conflicts 

By analyzing conflicts based on leading-following vehicle interactions, the results presented in 
Figure 16 were assessed. The suggested Measure of Effectiveness (MOE) can also be seen in 
Figure 16.  

 
Figure 16 The Results of Leading and Following Interactions Analysis 

The second method, “conflicts categorized by right- and left-turn movements,” revealed the results 
shown in Figure 17. 
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Figure 17 The Results of Right- and Left-Turn Movements Analysis 

Considering the phase patterns shown in Figure 18, the third method “conflicts occurring during 
different phases of the traffic signal” revealed the results shown in Tables 7 (Frequency) and 8 
(Severity).   

  
Figure 18 Different Phases of The Traffic Signal 
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Table 7 Frequency of Conflicts in Different Phases of the Traffic Signal 

Phase 
Zone 

SUM 
A B C D E F G H 

ф1 0 0 0 0 57 0 0 41 98 

ф2 0 0 0 90 68 0 0 0 158 

ф3 16 19 0 0 0 0 72 0 107 

ф4 0 0 0 0 0 2 11 0 13 

ф5 79 9 0 42 0 0 0 0 130 

ф6 82 0 0 0 0 0 0 16 98 

ф7 0 0 100 0 0 41 0 0 141 

ф8 0 24 79 0 0 0 0 0 103 

SUM 177 52 179 132 125 43 83 57 848 
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Table 8 Severity of Conflicts in Different Phases of the Traffic Signal 

Phase 
Zone 

SUM 
A B C D E F G H 

ф1 0 0 0 0 19.72 0 0 17.08 36.8 

ф2 0 0 0 28.79 21.84 0 0 0 50.63 

ф3 4.79 4.6 0 0 0 0 18.57 0 27.96 

ф4 0 0 0 0 0 0.79 3.67 0 4.46 

ф5 26.08 2.96 0 19.98 0 0 0 0 49.02 

ф6 24.44 0 0 0 0 0 0 5.2 29.64 

ф7 0 0 34.05 0 0 15.49 0 0 49.54 

ф8 0 8.7 25.66 0 0 0 0 0 34.36 

SUM 55.31 16.26 59.71 48.77 41.56 16.28 22.24 22.28 282.41 

 

The recorded video files of vehicle-pedestrian conflicts were analyzed using an image-processing 
plugin in MATLAB to evaluate the frequency and severity of these conflicts. The analysis 
identified the maximum frequency of conflicts across various zones and phases of the intersection. 
Specifically, 46% of conflicts in zone A occurred during phase ϕ6 (SBR & SBT), 46% in zone B 
during phase ϕ8 (EBR & EBT), 56% in zone C during phase ϕ7 (WBL), 68% in zone D during 
phase ϕ2 (NBR & NBT), 54% in zone E during phase ϕ2 (NBR & NBT), 95% in zone F during 
phase ϕ7 (WBL), 87% in zone G during phase ϕ3 (EBL), and 72% in zone H during phase ϕ1 
(SBL). A notable gradient at the northern approach (NW, NS, NE directions) was observed, 
contributing significantly to both the frequency and severity of vehicle-pedestrian conflicts in this 
area. Figure 19 and 20 illustrates the heatmap of conflicts’ frequency from May to August 2022. 
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Figure 19 Vehicle-Pedestrian Conflicts Heat Map in May (left figure) and June (right figure) 

 
Figure 20 Vehicle-Pedestrian Conflicts Heat Map in July (left figure) and August (right figure) 

In the "vehicle-pedestrian conflicts based on leading-following vehicles" method, the results 
revealed significant conflict severity in zone C (northern approach with a severity of 58.1 as 
1/PET), zone D (northern approach with 54.3 as 1/PET), and zone A (eastern approach with 54.3 
as 1/PET). Additionally, a high frequency of conflicts was observed in zone C (175 conflicts), 
zone A (173 conflicts), zone D (151 conflicts), and zone E (122 conflicts). In the "vehicle-
pedestrian conflicts based on right- and left-turn movements" method, zones A, C, D, and E were 
identified as having the highest severity of conflicts during turn movements. Lastly, in the 
"vehicle-pedestrian conflicts in different phases of the traffic signal" method, most conflicts were 
recorded during phase ф2 (158 conflicts), phase ф7 (141 conflicts), and phase ф5 (130 conflicts). 
Severe conflicts were predominantly observed in the same phases: ф2, ф7, and ф5. 

Consequently, zone E consistently emerges as a critical zone for vehicle-pedestrian conflicts across 
the three proposed methods. Similarly, the results indicate that zone E has the highest MOE value 
based on conflict frequency and severity. However, the safety index has yet to be validated. To 
achieve this, it is necessary to move the LiDAR sensor infrastructure to other intersections as part 
of the validation process. The authors are keen to evaluate the proposed MOE at other signalized 
intersections in Baltimore City. Cold Spring Lane was selected as the initial case study because it 
was already equipped with two CCTVs, allowing for efficient verification of LiDAR data 
collection accuracy against manual CCTV counts. Additionally, the necessary infrastructure and 
connection of the LiDAR sensor to the controller cabinet were already established at the time of 
installation, making further validation efforts at other intersections more time-consuming. 

A new safety index was proposed to assess pedestrian safety, where 1/PET represents the severity 
of vehicle-pedestrian conflicts [35]. In the proposed MOE, 1/PET serves as the numerator, 
highlighting its critical role in determining the safety index. Traffic flow, including vehicle and 
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pedestrian volumes, forms the denominator of the MOE. Factors such as road geometry, including 
approach gradients and sight triangles, also influence conflict frequency and severity. Based on 
the safety index results, improvements are necessary in the western approach (zone E) and southern 
approach (zone G) to enhance pedestrian safety. The poor performance of pedestrian traffic 
signals, particularly in the southern approaches (zones G and H), has led to increased conflict 
frequency.  

Conclusion 
This report provides a comprehensive analysis of key areas in the realm of CAV technology, 
focusing on LiDAR validation with CCTV systems, CAV testbeds, real-time communication 
between RSUs and OBUs, the detection of jaywalking events, and V2P conflicts detection at 
signalized intersections. These five areas are fundamental to enhancing road safety, particularly 
for VRUs such as pedestrians and cyclists. LiDAR validation with CCTV ensures the accuracy of 
real-time data, which is crucial for effective traffic management and safety interventions. CAV 
testbeds across the country serve as vital platforms for evaluating new technologies and 
communication protocols, helping to create safer and more efficient transportation systems. The 
ability of RSUs and OBUs to broadcast static safety messages in real-time plays a key role in 
reducing traffic incidents by delivering timely warnings to drivers. Additionally, the use of LiDAR 
technology to detect jaywalking events at intersections helps prevent pedestrian conflicts/crashes 
by identifying risky behavior early. Detecting V2P conflicts through CAV testbeds further 
enhances pedestrian safety by minimizing the risk of collisions between vehicles and pedestrians. 

Morgan State University's CAV testbed exemplifies the potential of advanced research and 
technology integration in transportation safety. With its innovative deployment of LiDAR sensors, 
RSUs, OBUs, and new signal controllers with the ability of broadcasting SPaT messages and real-
time communication systems, it provides a unique platform to test and optimize solutions for a 
variety of traffic scenarios. The testbed not only supports the validation of cutting-edge 
technologies but also offers actionable insights into real-world applications, enabling researchers 
to address urban mobility challenges more effectively. By serving as a model for future CAV 
deployments, Morgan State’s testbed highlights the transformative impact of advanced traffic 
safety technologies that enhance pedestrian safety. Its role in advancing research and practical 
solutions makes it a valuable asset in the ongoing efforts to improve road safety and reduce V2V, 
V2P, and V2B crashes, especially for VRUs in complex urban environments. 
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